Instrument Control Toolbox™
User's Guide

<

MATLAB&SIMULINK

R2017a S } MathWorks:

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Instrument Control Toolbox™ User's Guide

© COPYRIGHT 2005-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 2000
June 2001

July 2002
August 2002
June 2004
October 2004
March 2005
June 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017

First printing
Second printing
Online only
Third printing
Online only
Fourth printing
Online only
Fifth printing
Online only
Online only
Online only
Online only
Sixth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 12)
Revised for Version 1.1 (Release 12.1)
Revised for Version 1.2 (Release 13)
Revised for Version 1.2

Revised for Version 2.0 (Release 14)
Revised for Version 2.1 (Release 14SP1)
Revised for Version 2.2 (Release 14SP2)
Minor revision for Version 2.2

Revised for Version 2.3 (Release 14SP3)
Revised for Version 2.4 (Release 2006a)
Revised for Version 2.4.1 (Release 2006b)
Revised for Version 2.4.2 (Release 2007a)
Revised for Version 2.5 (Release 2007b)
Revised for Version 2.6 (Release 2008a)
Revised for Version 2.7 (Release 2008b)
Revised for Version 2.8 (Release 2009a)
Revised for Version 2.9 (Release 2009b)
Revised for Version 2.10 (Release 2010a)
Revised for Version 2.11 (Release 2010b)
Revised for Version 2.12 (Release 2011a)
Revised for Version 3.0 (Release 2011b)
Revised for Version 3.1 (Release 2012a)
Revised for Version 3.2 (Release 2012b)
Revised for Version 3.3 (Release 2013a)
Revised for Version 3.4 (Release 2013b)
Revised for Version 3.5 (Release 2014a)
Revised for Version 3.6 (Release 2014b)
Revised for Version 3.7 (Release 2015a)
Revised for Version 3.8 (Release 2015b)
Revised for Version 3.9 (Release 2016a)
Revised for Version 3.10 (Release 2016b)
Revised for Version 3.11 (Release 2017a)

Contents

Getting Started
Instrument Control Toolbox Product Description 1-2
Key Features i, 1-2
Instrument Control Toolbox Overview 1-3
Getting to Know the Instrument Control Toolbox Software . . 1-3
Exploring the Instrument Control Toolbox Software 14
Learning About the Instrument Control Toolbox Software . . . 1-4
Using the Documentation Examples 1-5
About Instrument Control 1-6
Passing Information Between the MATLAB Workspace and
Your Instrument 1-6
MATLAB Functionsiuiiieinneon.. 1-8
Interface Driver Adaptor 1-9
Installation Information 1-10
Installation Requirements 1-10
Toolbox Installation 1-10
Hardware and Driver Installation 1-10
Supported Hardware 1-12
Examining Your Hardware Resources 1-14
instrhwinfo Function 1-14
Test & Measurement Tool 1-18
Viewing the IVI Configuration Store 1-19
Communicating with Your Instrument 1-22
Instrument Control Session Examples 1-22
Communicating with a GPIB Instrument 1-22
Communicating with a GPIB-VXI Instrument 1-23
Communicating with a Serial Port Instrument 1-24

vi

Contents

Communicating with a GPIB Instrument Using a Device

Object

General Preferences for Instrument Control

Accessing General Preferences
MATLAB Instrument Driver Editor

MATLAB Instrument Driver Testing Tool

Device Objects

IVI Configuration Store
IVI Instruments

Interface and Property Help
instrhelp Function
propinfo Function

instrsupport Function

Overview Help
Documentation Examples
Online Support

1-25

1-27
1-27
1-28
1-29
1-30
1-31
1-31

1-32
1-32
1-33
1-34
1-34
1-34
1-35

Instrument Control Session

2|

Creating Instrument Objects
Overviewc.covuueon..
Interface Objects
Device Objects

Connecting to the Instrument

Configuring and Returning Properties
Configuring Property Names and Property Values
Returning Property Names and Property Values

Property Inspector

Communicating with Your Instrument
Interface Objects and Instrument Commands
Device Objects and Instrument Drivers

Disconnecting and Cleaning Up
Disconnecting an Instrument Object

2-2
2-2

2-2

2-4

2-5
2-5
2-6
2-6

2-8
2-8
2-8

2-9
2-9

Cleaning Up the MATLAB Workspace 2-9

Summary 2-10
Advantages of Using Device Objects 2-10
When to Use Interface Objects 2-10

Instrument Control Toolbox Properties 2-12

Using Interface Objects

3

Creating an Interface Object 3-2
Object Creation Functions 3-2
Configuring Properties During Object Creation 3-3
Creating an Array of Instrument Objects 3-3

Connecting to the Instrument 3-5

Configuring and Returning Properties 3-6
Base and Interface-Specific Properties 3-6
Returning Property Names and Property Values 3-6
Configuring Property Values 3-9
Specifying Property Names 3-9
Default Property Values 3-9
Using Tab Completion for Functions 3-10
Property Inspector 3-12

Writing and Reading Data 3-14
Before Performing Read/Write Operations 3-14
Writing Data 3-15
Reading Data 3-20

Using SCPI Commands 3-25

Disconnecting and Cleaning Up 3-26
Disconnecting an Instrument Object 3-26
Cleaning Up the MATLAB Workspace 3-26

vii

viii

Contents

Controlling Instruments Using GPIB

4

GPIB Overview

What Is GPIB?
Important GPIB Features

GPIB Lines

Status and Event Reporting

Creating a GPIB Object . .
Using the gpib Function
GPIB Object Display . .

Configuring the GPIB Address

Writing and Reading Data

Rules for Completing Write and Read Operations
Writing and Reading Text Data

Reading and Writing Binary Data
Parsing Input Data Using scanstr

Understanding EOI and

EOS il

Events and Callbacks

Introduction to Events a

nd Callbacks

Event Types and Callback Properties
Responding To Event Information

Creating and Executing

Callback Functions

Enabling Callback Functions After They Error
Using Events and Callbacks to Read Binary Data

Triggers

Using the trigger Function

Executing a Trigger . ..

Serial Polls

Using the spoll Function

Executing a Serial Poll

4-2
4-3

4-8

4-13
4-13
4-14

4-16

4-18
4-18
4-19
4-22
4-25
4-26

4-29
4-29
4-30
4-31
4-32
4-33
4-34

4-36
4-36
4-36

4-39
4-39
4-39

Controlling Instruments Using VISA

S|

VISA Overview i 5-2
What Is VISA? 5-2
Interfaces Used with VISA 5-2
Supported Vendor and Resource Names 5-3

Working with the GPIB Interface 5-5
Understanding VISA-GPIB 5-5
Creating a VISA-GPIB Object 5-5
VISA-GPIB Addressc.0 i, 5-7

Working with VXI and PXI Interfaces 5-9
Understanding VISA-VXT 5-9
Understanding VISA-PXT 5-10
Creating a VISA-VXI Object 5-10
VISA-VXT Address oi i 5-12
Register-Based Communication 5-13

Working with the GPIB-VXI Interface 5-21
Understanding VISA-GPIB-VXT 5-21
Creating a VISA-GPIB-VXI Object 5-22
VISA-GPIB-VXI Addressc.cvviiiiiiinnnnn... 5-24

Working with the Serial Port Interface 5-26
Understanding the Serial Port 5-26
Creating a VISA-Serial Object 5-26
Configuring Communication Settings 5-28

Working with the USB Interface 5-30
Creating a VISA-USB Object 5-30
VISA-USB Addressiiiiiiiiinnan. 5-32

Working with the TCP/IP Interface for VXI-11 and HiSLIP 5-34
Understanding VISA-TCP/IP 5-34
Creating a VISA-TCPIP Object 5-34
VISA-TCPIP Address 5-36

Working with the RSIB Interface 5-38
Understanding VISA-RSIB 5-38
Creating a VISA-RSIB Object 5-38

ix

VISA-RSIB Addressc.c.uuinnnn. 5-40

Working with the Generic Interface 5-42
Generic VISA 5-42
VISA Node and Generic VISA Support in Test & Measurement

Tool . . 5-42
Generic VISA Support in the Command-line Interface 5-42

Reading and Writing ASCII Data Using VISA 5-45
Configuring and Connecting to the Instrument 5-46
Writing ASCII Data 5-46
ASCII Write Properties 5-47
Reading ASCIT Data 5-48
ASCII Read Propertiesoiiiiinun. .. 5-49
Cleanup 5-50

Reading and Writing Binary Data Using VISA 5-51
Configuring and Connecting to the Instrument 5-52
Writing Binary Data 5-52
Binary Write Properties 5-53
Reading Binary Data 5-54
Binary Read Properties 5-54
Cleanup . ..o e 5-56

Asynchronous Read and Write Operations Using VISA . .. 5-58
Functions and Properties 5-58
Synchronous Versus Asynchronous Operations 5-59
Configuring and Connecting to the Instrument 5-59
Reading Data Asynchronously 5-60
Asynchronous Read Properties 5-60
Using Callbacks During an Asynchronous Read 5-61
Writing Data Asynchronously 5-62
Cleanup e 5-62

Controlling Instruments Using the Serial Port

6/

Serial Port Overview 6-2
What Is Serial Communication? 6-2
Serial Port Interface Standard 6-2

X Contents

Supported Platforms

Connecting Two Devices with a Serial Cable
Serial Port Signals and Pin Assignments

Serial Data Format

Finding Serial Port Information for Your Platform

Serial Port Object

Creating a Serial Port Object

Serial Port Object Display . .

Configuring Communication Settings

Writing and Reading Data . ..
Asynchronous Write and Rea

d Operations

Rules for Completing Write and Read Operations
Writing and Reading Text Data

Writing and Reading Binary

Events and Callbacks

Data

Event Types and Callback Properties
Responding To Event Information

Using Events and Callbacks

Using Control Pins
Control Pins

Signaling the Presence of Connected Devices

Controlling the Flow of Data:

Handshaking

6-3
6-3
6-4
6-8
6-11

6-15
6-15
6-17

6-19

6-20
6-20
6-26
6-27
6-31

6-36
6-36
6-37
6-39

6-41
6-41
6-41
6-44

Controlling Instruments Using TCP/IP and UDP

7]

TCP/IP and UDP Comparison

Create a TCP/IP Object

TCP/IP Object
TCP/IP Object Display

TCP/IP Communication with a
Server Drops the Connection

Remote Host

7-4
7-4
7-5

7-7
7-8

xi

xii

Contents

Create a UDP Object
UDP Object i
The UDP Object Display
Enable Port Sharingover UDP

UDP Communication Between Two Hosts

Rules for Completing Read and Write Operations over TCP/
IPand UDP
Completing Write Operations
Completing Read Operations

Basic Workflow to Read and Write Data over TCP/IP

Read and Write ASCII Data over TCP/IP
Functions and Properties
Configuring and Connecting to the Server
Writing ASCII Data,
ASCII Write Properties
Reading ASCIT Data
ASCII Read Properties
Cleanup . ..o i e

Read and Write Binary Data over TCP/IP
Functions and Properties
Configuring and Connecting to the Server
Writing Binary Data
Binary Write Properties
Configuring InputBufferSize
Reading Binary Data
Cleanup e

Asynchronous Read and Write Operations over TCP/IP . ..
Functions and Properties
Synchronous Versus Asynchronous Operations
Configuring and Connecting to the Server
Reading Data Asynchronously
Reading Data Asynchronously — Continuous

ReadAsyncMode
Reading Data Asynchronously — Manual ReadAsyncMode . .
Defining an Asynchronous Read Callback
Using Callbacks During an Asynchronous Read
Writing Data Asynchronously

7-10
7-10
7-12
7-12

7-14

7-16
7-16
7-16

7-18

7-21
7-21
7-22
7-22
7-23
7-24
7-25
7-25

7-26
7-26
7-27
7-28
7-29
7-29
7-30
7-31

7-32
7-32
7-33
7-33
7-34

7-34
7-35
7-36
7-36
7-37

Cleanup

Basic Workflow to Read and Write Data over UDP

Read and Write ASCII Data over UDP
Functions and Properties
Configuring and Connecting to the Server
Writing ASCIT Data i,
ASCII Write Properties,
Reading ASCITI Data
ASCII Read Properties0innn...

Cleanup

Read and Write Binary Dataover UDP
Functions and Properties
Configuring and Connecting to the Server
Writing Binary Data
Configuring InputBufferSize
Reading Binary Data

Cleanup

Asynchronous Read and Write Operations over UDP
Functions and Properties
Synchronous Versus Asynchronous Operations
Configuring and Connecting to the Server
Reading Data Asynchronously
Reading Data Asynchronously Using Continuous

ReadAsyncMode
Reading Data Asynchronously Using Manual

ReadAsyncMode
Defining an Asynchronous Read Callback
Using Callbacks During an Asynchronous Read
Writing Data Asynchronously

Cleanup

Events and Callbacks
Event Types and Callback Properties
Responding To Event Information
Using Events and Callbacks

Communicate Using TCP/IP Server Sockets
About Server Sockets

Example

7-37

7-38

7-40
7-40
7-41
7-42
7-42
7-43
7-44
7-45

7-46
7-46
7-47
7-48
7-49
7-49
7-51

7-52
7-52
7-53
7-53
7-54

7-54

7-55
7-56
7-57
7-57
7-58

7-59
7-59
7-60
7-61

7-63

7-63
7-63

xiii

xiv

Contents

Controlling Instruments Using Bluetooth

8

Bluetooth Interface Overview 8-2
Bluetooth Communication 8-2
Supported Platforms for Bluetooth 8-2

Configuring Bluetooth Communication 8-3
Discovering Your Device 8-3
Viewing Bluetooth Device Properties 8-5

Transmitting Data Over the Bluetooth Interface 8-10

Using Bluetooth Interface in Test & Measurement Tool . . . 8-14
Troubleshooting 8-14

Using Events and Callbacks with Bluetooth 8-15

Bluetooth Interface Usage Guidelines 8-16

Controlling Instruments Using 12C

9

12C Interface Overview u.... 9-2
I2C Communication 9-2
Supported Platforms for 12C 9-2

Configuring 12C Communication 9-4

Transmitting Data Over the I12C Interface 9-9

Using Properties on an 12C Object 9-15

I12C Interface Usage Requirements and Guidelines 9-18

Controlling Instruments Using SPI

10|

SPI Interface Overview 10-2
SPI Communicationc.uuiriiniennon.. 10-2
Supported Platforms for SPI 10-2

Configuring SPI Communication 10-4

Transmitting Data Over the SPI Interface 10-9

Using Properties on the SPI Object 10-18

SPI Interface Usage Requirements and Guidelines 10-22

Controlling Devices Using MODBUS

11

MODBUS Interface Supported Features 11-2
MODBUS Capabilities 11-2
Supported Platforms for MODBUS 11-2

Create a MODBUS Connection 114

Configure Properties for MODBUS Communication 11-7

Read Data from a MODBUS Server 11-11
Types of Data You Can Read Over MODBUS 11-11
Reading Coils Over MODBUS 11-11
Reading Inputs Over MODBUS 11-12
Reading Input Registers Over MODBUS 11-13
Reading Holding Registers Over MODBUS 11-13
Specifying Server ID and Precision 11-14

Read Temperature from a Remote Temperature Sensor . 11-16

Write Data to a MODBUS Server 11-18
Types of Data You Can Write to Over MODBUS 11-18
Writing Coils Over MODBUS 11-18

Xv

xvi

Writing Holding Registers Over MODBUS 11-19
Write and Read Multiple Holding Registers 11-21

Modify the Contents of a Holding Register Using a Mask
Write 11-24

Using Device Objects

12

Device Objects i 12-2
OVEIVIEW . oottt e e e et et 12-2
What Are Device Objects? 12-2
Device Objects for MATLAB Instrument Drivers 12-3

Creating and Connecting Device Objects 12-5
Device Objects for MATLAB Interface Drivers 12-5
Device Objects for VXIplug&play and IVI Drivers 12-6
Connecting the Device Object 12-7

Communicating with Instruments 12-8
Configuring Instrument Settings 12-8
Calling Device Object Methods 12-9
Control Commands 12-11

Device Groups e 12-13
Working with Group Objects 12-13
Using Device Groups to Access Instrument Data 12-13

Using VXIplug&play Drivers

13|

VXI plug and play Setup 13-2
Instrument Control Toolbox Software and VXIplug&play

Drivers 13-2

VISA Setup o 13-2

Other Software Requirements 13-3

Contents

14

VXI plug and play Drivers 13-4
Installing VXI plug&play Drivers 13-4
Creating a MATLAB VXIplug&play Instrument Driver 13-5
Constructing Device Objects Using a MATLAB VXIplug&play

Instrument Driver 13-7

Creating Shared Libraries or Standalone Applications When
Using IVI-Cor VXI i 13-8
Using IVI Drivers

IVI Drivers Overview 14-2
Instrument Control Toolbox Software and IVI Drivers 14-2
IVI-C .. e 14-2

Instrument Interchangeability 14-3
Minimal Code Changes 14-3
Effective Use of Interchangeability 14-3
Examples of Interchangeability 14-3

Getting Started with IVI Drivers 14-5
Introduction 14-5
Requirements to Work with MATLAB 14-6
Creating Shared Libraries or Standalone Applications When

Using IVI-Cor VXI 14-8
MATLAB IVI Instrument Driver 14-9
Using MATLAB IVI Wrapperscoovu.... 14-12

IVI Configuration Store 14-15
Benefits of an IVI Configuration Store 14-15
Components of an IVI Configuration Store 14-15
Configuring an IVI Configuration Store 14-16

Using IVI-C Class-Compliant Wrappers 14-21
IVI-C Wrapperst i e e 14-21
Prerequisites 14-21
Creating Shared Libraries or Standalone Applications When

Using IVI-Cor VXI 14-22
Reading Waveforms Using the IVI-C Class Compliant
Interface 14-22

xvil

xviii

IVI-C Class Compliant Wrappers in Test & Measurement
Tool ... e

Using Quick-Control Oscilloscope
Quick-Control Oscilloscope
Quick-Control Oscilloscope Prerequisites
Reading Waveforms Using the Quick-Control Oscilloscope .
Reading a Waveform Using a Tektronix Scope
Quick-Control Oscilloscope Functions
Creating Shared Libraries or Standalone Applications When

Using IVI-Cor VXI

Using Quick-Control Function Generator
Quick-Control Function Generator
Quick-Control Function Generator Prerequisites
Generating Waveforms Using the Quick-Control Function

Generatori it
Quick-Control Function Generator Functions
Quick-Control Function Generator Properties
Creating Shared Libraries or Standalone Applications When

Using IVI-Cor VXI

14-23

14-25
14-25
14-25
14-26
14-28
14-31

14-33
14-34
14-34
14-34
14-35
14-38
14-41

14-44

Instrument Support Packages

15

Contents

Instrument Control Toolbox Supported Hardware
Install the Ocean Optics Spectrometers Support Package .
Install the NI-SCOPE Oscilloscopes Support Package

Install the NI-FGEN Function Generators Support
Package

Install the NI-DCPower Power Supplies Support Package
Install the NI-DMM Digital Multimeters Support Package

Install the NI-845x 12C/SPI Interface Support Package . .

15-2

15-4

15-6

15-8

15-10

15-12

15-14

Install the Total Phase Aardvark I12C/SPI Interface Support
Package e 15-15

Install the NI-Switch Hardware Support Package 15-16

Install the National Instruments VISA and ICP Interfaces
Support Package 15-18

Install the Keysight I0 Libraries and VISA Interface Support
Package 15-20

Using Generic Instrument Drivers

16

Generic Drivers: Overview 16-2
Writing a Generic Driver 16-3
Creating the Driver and Defining Its Initialization
Behavior 16-3
Defining Properties, 16-4
Defining Functions 16-7
Using Generic Driver with Test & Measurement Tool 16-8
Creating and Connecting the Device Object 16-8
Accessing Properties 16-9
Using Functions 16-10
Using a Generic Driver at Command Line 16-11
Creating and Connecting the Device Object 16-11
Accessing Properties 16-12
Using Functions 16-13

Saving and Loading the Session

17

Saving and Loading Instrument Objects 17-2
Saving Instrument Objectstoa File 17-2

xix

XX

Saving Objects toa MAT-File 17-3

Debugging: Recording Information to Disk 17-6
Using the record Function 17-6
Introduction to Recording Information 17-7
Creating Multiple Record Files 17-7
Specifying a File Name 17-7
Record File Format 17-8
Recording Information to Disk 17-10

Test & Measurement Tool

18]

Test & Measurement Tool Overview 18-2
Instrument Control Toolbox Software Support 18-2
Navigating the Tree, 18-2

Using the Test & Measurement Tool 18-4
Overview of the Examples 18-4
Hardware i, 18-4
Instrument Objects, 18-11
Instrument Drivers 18-16

Using the Instrument Driver Editor

19

MATLAB Instrument Driver Editor Overview 19-2
What Is a MATLAB Instrument Driver? 19-2
How Does a MATLAB Instrument Driver Work? 19-3
Why Use a MATLAB Instrument Driver? 19-3

Creating MATLAB Instrument Drivers 19-5
Driver Components 0., 19-5
MATLAB Instrument Driver Editor Features 19-6
Saving MATLAB Instrument Drivers 19-6
Driver Summary and Common Commands 19-6
Initialization and Cleanup 19-10

Contents

Properties
Properties: Overview
Property Components
Examples of Properties

Functions

Understanding Functions . .
Function Components
Examples of Functions

Groups
Group Components

Examples of Groups

Using Existing Drivers

Modifying MATLAB Instrument Drivers
Importing VXIplug&play and IVI Drivers

19-16
19-16
19-16
19-18

19-31
19-31
19-31
19-32

19-43
19-43
19-44

19-59
19-59
19-60

Using the Instrument Driver Testing Tool

20|

Instrument Driver Testing Tool Overview

Functionality

Drivers

Example

Setting Up Your Test
Test File

Test Structure i
Starting

Providing a Name and Description

Specifying the Driver

Specifying an Interface
Setting Test Preferences . . .
Setting Up a Driver Test

Defining Test Steps
Test Step: Set Property

Test Step: Get Property . . .
Test Step: Properties Sweep

20-2
20-2
20-2
20-3
20-3
20-4

20-5
20-5
20-5
20-5
20-6
20-6
20-7

20-11
20-11
20-14
20-16

xx1

xxii

Test Step: Function 20-19

Saving Your Test 20-23
Saving the Test as MATLAB Code 20-23
Saving the Test as a Driver Function 20-23

Testing and Results 20-25
Running All Steps 20-25
Partial Testing, 20-27
Exporting Results 20-27
Saving Results 20-28

Instrument Control Toolbox Troubleshooting

21

How to Use This Troubleshooting Guide 21-2
Is My Hardware Supported? 21-3
Supported Interfaces 21-3
Supported Hardware, 214
Troubleshooting SPI Interface 21-5
Supported Platforms 21-5
Adaptor Requirements 21-6
Configuration and Connection 21-7
Troubleshooting I12C Interface 21-10
Supported Platforms 21-10
Adaptor Requirements 21-11
Configuration and Connection 21-12
Troubleshooting MODBUS Interface 21-15
Supported Platforms 21-15
Configuration and Connection 21-15
Other Troubleshooting Tips for MODBUS 21-16
Troubleshooting Bluetooth Interface 21-18
Supported Platforms 21-18
Adaptor Requirements 21-18
Configuration and Connection 21-20

Contents

Other Troubleshooting Tips for Bluetooth 21-23
Troubleshoot Bluetooth Interface in Test & Measurement

Tool . .. 21-24
Troubleshooting Serial Port Interface 21-25
Supported Platforms 21-25
Adaptor Requirements 21-25
Configuration and Connection 21-26
Other Troubleshooting Tips for Serial Port 21-27
Troubleshooting GPIB Interface 21-29
Supported Platforms 21-29
Adaptor Requirements 21-29
Configuration and Connection 21-31
Other Troubleshooting Tips for GPIB 21-33
Troubleshooting TCP/IP Interface 21-35
Supported Platforms 21-35
Configuration and Connection 21-35
Other Troubleshooting Tips for TCP/IP 21-36
Troubleshooting UDP Interface 21-38
Supported Platforms 21-38
Configuration and Connection 21-38

Troubleshooting IVI, VISA, and the Quick-Control

Interfaces e 21-41
Supported Platforms 21-41
Adaptor Requirements 21-41
Configuration and Connection 21-44
VISA Supported Vendor and Resource Names 21-46

Hardware Support Packages 21-47
Deploying Standalone Applications with Instrument Control

Toolbox 21-49

Tips for both interface based communication and driver-based
CoMmMUNICAtION . . .ttt et e e e 21-49
Tips for interface based communication 21-49
Tips for driver based communication 21-49
Hardware Support packages 21-51
Contact MathWorks and Use the instrsupport Function . 21-52

xx1iii

xxiv

Using the Instrument Control Toolbox Block Library

22

Overview e 22-2
Opening the Instrument Control Block Library 22-3
Using the instrumentlib Command from MATLAB 22-3
Using the Simulink Library Browser 22-5
Building Simulink Models to Transmit Data 22-7
Sending and Receiving Data Through a Serial Port
Loopback e 22-7
Sending and Receiving Data Over a TCP/IP Network 22-17

Functions — Alphabetical List

23|

Properties — Alphabetical List

24

Block Reference

25|

Vendor Driver Requirements and Limitations

A

Driver Requirements A-2
GPIB Driver Limitations by Vendor A-3
ICS Electronicst A-3

Contents

Keysight (formerly Agilent Technologies) A-3

Measurement Computing Corporation MCC) A-4
VISA Driver Limitations A-5
Keysight (formerly Agilent Technologies) A-5
National Instruments A-5
Bibliography

XXV

Getting Started

* “Instrument Control Toolbox Product Description” on page 1-2
+ “Instrument Control Toolbox Overview” on page 1-3

* “About Instrument Control” on page 1-6

* “Installation Information” on page 1-10

* “Supported Hardware” on page 1-12

+ “Examining Your Hardware Resources” on page 1-14

* “Communicating with Your Instrument” on page 1-22

* “General Preferences for Instrument Control” on page 1-27

* “Interface and Property Help” on page 1-32

1 Getting Started

Instrument Control Toolbox Product Description

1-2

Control and communicate with test and measurement instruments

Instrument Control Toolbox lets you connect MATLAB® directly to instruments such
as oscilloscopes, function generators, signal analyzers, power supplies, and analytical
instruments. The toolbox connects to your instruments via instrument drivers such
as IVI and VXIplug&play, or via text-based SCPI commands over commonly used
communication protocols such as GPIB, VISA, TCP/IP, and UDP. You can also control
and acquire data from your test equipment without writing code.

With Instrument Control Toolbox, you can generate data in MATLAB to send out to

an instrument, or read data into MATLAB for analysis and visualization. You can
automate tests, verify hardware designs, and build test systems based on LXI, PXI, and
AXle standards. For remote communication with other computers and devices from

MATLAB, the toolbox provides built-in support for TCP/IP, UDP, 12C and Bluetooth®
serial protocols.

Key Features

« IVI, VXIplug&play, and native MATLAB instrument driver support
+ GPIB and VISA (GPIB, GPIB-VXI, VXI, USB, TCP/IP, and serial) support
+ TCP/IP, UDP, I12C and Bluetooth serial protocol support

* Instrument Control app for identifying, configuring, and communicating with
instruments

Simulink® blocks for sending and receiving live data between instruments and
Simulink models

* Functions for reading and writing binary and ASCII data to and from instruments

* Synchronous and asynchronous (blocking and nonblocking) read-and-write operations

Instrument Control Toolbox Overview

Instrument Control Toolbox Overview

In this section...

“Getting to Know the Instrument Control Toolbox Software” on page 1-3
“Exploring the Instrument Control Toolbox Software” on page 1-4

“Learning About the Instrument Control Toolbox Software” on page 1-4

“Using the Documentation Examples” on page 1-5

Getting to Know the Instrument Control Toolbox Software

Instrument Control Toolbox software is a collection of MATLAB functions built on
the MATLAB technical computing environment. The toolbox provides you with these
features:

* A framework for communicating with instruments that support the GPIB interface

(IEEE®-488), the VISA standard, and the TCP/IP and UDP protocols. Note that the
toolbox extends the basic serial port features included with the MATLAB software.

* Support for IVI®, VXIplug&play, and MATLAB instrument drivers.

+ Functions for transferring data between the MATLAB workspace and your
instrument:
* The data can be binary (numerical) or text.

The transfer can be synchronous and block access to the MATLAB Command
Window, or asynchronous and allow access to the MATLAB Command Window.

* Event-based communication.
* Functions for recording data and event information to a text file.

* Tools that facilitate instrument control in an easy-to-use graphical environment.

Instrument Control Toolbox provides access to Agilent® Command Expert from MATLAB
to control and script instrument actions. In addition, Agilent Command Expert generates
MATLAB code that can be used from Instrument Control Toolbox. To learn more, see the
documentation for Agilent Command Expert version 1.1 or later, or

http://www.mathworks.com/agilentcmdexpert

1-3

http://www.mathworks.com/agilentcmdexpert

1 Getting Started

1-4

MathWorks provides several related products that are especially relevant to the kinds
of tasks you can perform with the Instrument Control Toolbox software. For more
information about any of these products, see

http://www.mathworks.com/products/instrument/related.html.

Exploring the Instrument Control Toolbox Software

For a list of the toolbox functions, type

help instrument

For the code of a function, type

type function_name

For help for any function, type

instrhelp function_name

You can change the way any toolbox function works by copying and renaming the file,
then modifying your copy. You can also extend the toolbox by adding your own files, or by
using it in combination with other products such as MATLAB Report Generator™or Data
Acquisition Toolbox™ product.

To use the Instrument Control Toolbox product, you should be familiar with the:

+ Basic features of MATLAB.

* Appropriate commands used to communicate with your instrument. These commands
might use the SCPI language or they might be methods associated with an IVI,
VXlIplug&play, or MATLAB instrument driver.

* Features of the interface associated with your instrument.

Learning About the Instrument Control Toolbox Software

Start with this set of topics, which describe how to examine your hardware resources,
how to communicate with your instrument, how to get online help, and so on. Then click
on the Getting Started link at the top of the page and read the topics contained there,
which provide a framework for constructing instrument control applications. Depending
on the interface used by your instrument, you might then want to read the appropriate
interface-specific chapter.

http://www.mathworks.com/products/instrument/related.html

Instrument Control Toolbox Overview

If you want detailed information about a specific function, refer to the functions
documentation. If you want detailed information about a specific property, refer to the
properties documentation.

Using the Documentation Examples

The examples in this guide use specific instruments such as a Tektronix® TDS 210 two-
channel oscilloscope or an Agilent 33120A function generator. Additionally, the GPIB
examples use a National Instruments® GPIB controller and the serial port examples
use the Windows" specific COM1 serial port. The string commands written to these
instruments are often unique to the vendor, and the address information such as

the board index or primary address associated with the hardware reflects a specific
configuration.

These examples appear throughout the documentation. You should modify the examples
to work with your specific hardware configuration.

1-5

1 Getting Started

About Instrument Control

1-6

In this section...

“Passing Information Between the MATLAB Workspace and Your Instrument” on page
1-6

“MATLAB Functions” on page 1-8

“Interface Driver Adaptor” on page 1-9

Passing Information Between the MATLAB Workspace and Your
Instrument

Instrument Control Toolbox software consists of two distinct components: MATLAB
functions and interface driver adaptors. These components allow you to pass information
between the MATLAB workspace and your instrument. For example, the following
diagram shows how information passes from the MATLAB software to an instrument via

the GPIB driver and the GPIB controller.

About Instrument Control

MATLAB

Interactive M-file functions

Instrument Control Toolbox

M-file functions

Disk file

Interface driver adaptors

Property values, data, and events

GPIB driver

Property values, data, and events

GPIB controller “""“m! 000000
o000

S 1111

This diagram illustrates how information flows from component to component.
Information consists of

* Property values

You define the behavior of your instrument control application by configuring
property values. In general, you can think of a property as a characteristic of the
toolbox or of the instrument that can be configured to suit your needs.

1-7

1 Getting Started

+ Data

You can write data to the instrument and read data from the instrument. Data can
be binary (numerical) or formatted as text. Writing text often involves writing string
commands that change hardware settings, or prepare the instrument to return data
or status information, while writing binary data involves writing numerical values
such as calibration or waveform data.

+ Events

An event occurs after a condition is met and might result in one or more callbacks.
Events can be generated only after you configure the associated properties. For
example, you can use events to analyze data after a certain number of bytes are read
from the instrument, or display a message to the MATLAB command line after an
error occurs.

MATLAB Functions

To perform any task within your instrument control application, you must call MATLAB
functions from the MATLAB workspace. Among other things, these functions allow you
to:

+ Create instrument objects, which provide a gateway to your instrument's capabilities
and allow you to control the behavior of your application.

+ Connect the object to the instrument.

* Configure property values.

+ Write data to the instrument, and read data from the instrument.

* Examine your hardware resources and evaluate your application status.

For a listing of all Instrument Control Toolbox software functions, refer to the functions
documentation. You can also display the toolbox functions by typing

help instrument

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

About Instrument Control

Interface Driver Adaptor

The interface driver adaptor (or just adaptor) is the link between the toolbox and

the interface driver. The adaptor's main purpose is to pass information between the
MATLAB workspace and the interface driver. Interface drivers are provided by your
instrument vendor. For example, if you are communicating with an instrument using a
National Instruments GPIB controller, then an interface driver such as NI-488.2 must
be installed on your platform. Note that interface drivers are not installed as part of the
Instrument Control Toolbox software.

Instrument Control Toolbox software provides adaptors for the GPIB interface and the
VISA standard. The serial port, TCP/IP, and UDP interfaces do not require an adaptor.

Interface Adaptors

Interface Adaptor Name

GPIB agilent, ics, mcc, ni
Serial port N/A

TCP/IP N/A

UDP N/A

VISA standard agilent, ni, tek

As described in “Examining Your Hardware Resources” on page 1-14, you can list the
supported interfaces and adaptor names with the instrhwinfo function.

1-9

1 Getting Started

Installation Information

In this section...

“Installation Requirements” on page 1-10

“Toolbox Installation” on page 1-10

“Hardware and Driver Installation” on page 1-10

Installation Requirements

To communicate with your instrument from the MATLAB workspace, you must install
these components:

+ MATLAB

* Instrument Control Toolbox software

Additionally, you might need to install hardware such as a GPIB controller and vendor-
specific software such as drivers, support libraries, and so on. For a complete list of all
supported vendors, refer to “Interface Driver Adaptor” on page 1-9.

Toolbox Installation

To determine if Instrument Control Toolbox software is installed on your system, type
ver

at the MATLAB Command Window. The MATLAB Command Window displays
information about the version of the MATLAB software you are running, including
a list of installed add-on products and their version numbers. Check the list to see if
Instrument Control Toolbox appears.

For information about installing the toolbox, refer to the installation documentation for
your platform. If you experience installation difficulties, look for the installation and

license information at the MathWorks® Web site (http://www.mathworks.com/support).
Hardware and Driver Installation

Installation of hardware devices such as GPIB controllers, instrument drivers, support
libraries, and so on is described in the documentation provided by the instrument vendor.
Many vendors provide the latest drivers through their Web site.

1-10

http://www.mathworks.com/support

Installation Information

Note: You must install all necessary device-specific software provided by the instrument
vendor in addition to the Instrument Control Toolbox software.

1-11

1 Getting Started

Supported Hardware

The following table lists the hardware support for the Instrument Control Toolbox. Notes

follow the table.

Feature 64-bit MATLAB on 64-bit MATLAB on Mac |64-bit MATLAB on
Windows (0} Linux

Serial supported supported supported

TCP/TP supported supported supported

UDP supported supported supported

VISA ? supported supported on one supported
vendor 3

GPIB * supported supported !

I2C° supported ' supported supported *

SPI°® supported * supported * supported

Bluetooth © supported supported

MODBUS supported supported supported

Quick-Control supported 2 supported 2 supported *

Oscilloscope and

Quick-Control

Function Generator

MATLAB supported supported supported

Instrument Drivers

MATLAB supported '

Instrument Drivers
made using IVI-

C drivers and
Instrument
Wrappers for IVI-C
drivers

Table Notes

1. Dependent on support by third-party vendor driver for the hardware on this platform.

Supported Hardware

2. Dependent on third-party vendor support of platform when using an IVI-driver with
Quick-Control Oscilloscope or Quick-Control Function Generator.

3. Requires Agilent, National Instruments, Tektronix, or TAMS VISA compliant with
VISA specification 5.0 or higher for any platform. Only National Instruments VISA is
supported on Mac OS. The other vendors’ VISA support does not include Mac OS.

4. Requires Keysight™ (formerly Agilent), ICS Electronics™, Measurement Computing™
(MCC), or National Instruments hardware and driver.

5. Requires Aardvark or National Instruments hardware and driver.

6. Bluetooth Serial Port Profile only.

1-13

1 Getting Started

Examining Your Hardware Resources

In this section...

“instrhwinfo Function” on page 1-14
“Test & Measurement Tool” on page 1-18
“Viewing the IVI Configuration Store” on page 1-19

instrhwinfo Function

You can examine the hardware-related resources visible to the toolbox with the
instrhwinfo function. The specific information returned by instrhwinfo depends on
the supplied arguments, and is divided into these categories:

+ “General Toolbox Information” on page 1-14

+ “Interface Information” on page 1-14

+ “Adaptor Information” on page 1-15

* “Instrument Object Information” on page 1-16

+ “Installed Driver Information” on page 1-17

General Toolbox Information

For general information about the Instrument Control Toolbox, type:
instrhwinfo

MATLABVersion: "7.0 (R14)*
SupportedInterfaces: {"gpib® “serial®™ “visa®" “tcpip®™ “udp"}
SupportedDrivers: {"matlab® “vxipnp®" "ivi"}
ToolboxName: "Instrument Control Toolbox*”
ToolboxVersion: "2.0 (R14)*

The Supportedlnterfaces and SupportedDrivers fields list the interfaces and
drivers supported by the toolbox, and not necessarily those installed on your computer.

Interface Information

To display information about a specific interface, you supply the interface name as an
argument to instrhwinfo. The interface name can be gpib, serial, tcpip, udp, or
visa.

1-14

Examining Your Hardware Resources

For the GPIB and VISA interfaces, the information includes installed adaptors. For the
serial port interface, the information includes the available ports. For the TCP/IP and
UDP interfaces, the information includes the local host address. For example, to display
the GPIB interface information:

out
out

instrhwinfo("gpib®)

Instal ledAdaptors: {"ics" "ni"}
JarFileVersion: "Version 2.0 (R14)*

The InstalledAdaptors field indicates that ICS Electronics (ICS) and National
Instruments drivers are installed. Therefore, you can communicate with instruments
using GPIB controllers from these vendors.

Adaptor Information

To display information about a specific installed adaptor, you supply the interface name
and the adaptor name as arguments to instrhwinfo.

Interface Name |Adaptor Name

gpib agilent, ics, mcc, ni

visa agilent, ni, tek

The returned information describes the adaptor, the vendor driver, and the object
constructors. For example, to display information for the National Instruments GPIB
adaptor,

ghwinfo = instrhwinfo("gpib”,"ni")

ghwinfo

AdaptorDIIName: [1x82 char]
AdaptorDIlVersion: "Version 2.0 (R14)*"
AdaptorName: “NI*
InstalledBoardlds: O
ObjectConstructorName: {"gpib(*ni*, 0, 2);"}
VendorDlIName: “gpib-32_dI1*
VendorDriverDescription: "NI1-488"

The ObjectConstructorName field provides the syntax for creating a GPIB object for
the National Instruments adaptor. In this example, the GPIB controller has board index
0 and the instrument has primary address 2.

1-15

1 Getting Started

1-16

g = gpib("ni”,0,2);
To display information for the Tektronix VISA adaptor,

vhwinfo
vhwinfo

instrhwinfo("visa~, "tek")

AdaptorDIIName: [1x83 char]
AdaptorDIlVersion: “Version 2.0 (R14 Beta 1)*"
AdaptorName: “TEK®
AvailableChassis: []
AvailableSerialPorts: {2x1 cell}
InstalledBoardlds: O
ObjectConstructorName: {3x1 cell}
SerialPorts: {2x1 cell}
VendorDIlIName: "visa32.dll*
VendorDriverDescription: "Tektronix VISA Driver-
VendorDriverVersion: 2.0500

The available VISA object constructor names are shown below.

vhwinfo.ObjectConstructorName
ans =

"visa("tek", "ASRL1::INSTR");"
"visa("tek®, "ASRL2::INSTR");"
"visa("tek", "GPIBO::1::INSTR");"

The ObjectConstructorName field provides the syntax for creating a VISA object for
the GPIB and serial port interfaces. In this example, the GPIB controller has board index
0 and the instrument has primary address 1.

vg = visa("tek","GPIBO::1::INSTR");
Instrument Object Information

To display information about a specific instrument object, you supply the object as an
argument to instrhwinfo. For example, to display information for the GPIB object
created in the (“Adaptor Information” on page 1-15), type:

ghwinfo instrhwinfo(g)

ghwinfo =
AdaptorDIIName: [1x82 char]
AdaptorDIlVersion: "Version 2.0 (R14)*"

Examining Your Hardware Resources

AdaptorName: “NI*
VendorDlIName: “gpib-32_dI1*
VendorDriverDescription: "NI-488"

To display information for the VISA-GPIB object created in the (“Adaptor Information”
on page 1-15), type:

vghwinfo
vghwinfo

instrhwinfo(vg)

AdaptorDlIName: [1x83 char]
AdaptorDllVersion: "Version 2.0 (R14)*
AdaptorName: “TEK®
VendorDIlIName: "visa32.dll*
VendorDriverDescription: "Tektronix VISA Driver”
VendorDriverVersion: 2.0500

Alternatively, you can return hardware information via the Workspace browser by right-
clicking an instrument object, and selecting Display Hardware Info from the context
menu.

Installed Driver Information

To display information about a supported driver type, you supply the driver type
as an argument to instrhwinfo. For example, to display information for the IVI
configuration, type:
instrhwinfo("ivi®)
ans =
LogicalNames: {"MylviCLogical®™ “MyScope® “TekScope"}
ProgramiDs: {"TekScope.TekScope"}
Modules: {"ag3325b"}
ConfigurationServerVersion: "1.3.1.0"

MasterConfigurationStore: "D:\Apps\IVI\Data\lviConfigurationStore.xml"
IVIRootPath: "D:\Apps\IVI*

To display information about a specific driver or resource, you supply the driver name
in addition to the type as an argument to instrhwinfo. For example, to display
information about the ag3325b VXIplug&play driver:

instrhwinfo("vxipnp®, "ag3325b*)
ans =
Manufacturer: “Agilent Technologies®
Model: "Agilent 3325B Synthesizer/Func. Gen.*
DriverVersion: "4.1"
DriverDIIName: “C:\VXIPNP\WINNT\bin\ag3325b_32._dII1"

1-17

1 Getting Started

Test & Measurement Tool

You can use the Test & Measurement Tool (tmtool) to manage the resources of your
instrument control session. You can use this tool to:

* Search for installed adaptors.
+ Examine available hardware.
+ Examine installed drivers.

* Examine instrument objects.

To open the Test & Measurement Tool, type:

tmtool
Hardware
Expand the Hardware node in the tree to list the supported interfaces.

Right-click the Hardware node to scan for instrument hardware. The interface nodes
expand to include entries for each instrument found by the scan.

a4 Test & Measurement Tool

File ‘“iew Toolz Help
|& B8

Test & Measurement

L. Instrumert Cartral Taalos

ontec-Board-0

L PAD-4 (TEKTRONIX,TDS |
i-Board-0

L PAD-4 (TEKTRONIX,TDS |
—@ v

) crE-vi

% TePIP (vid11)

& UsE

—E% TcPP

=25 uoe

ﬁt nﬂ" Instrurment Ohjects
A Instrument Drivers

K I i

Ready

1-18

Examining Your Hardware Resources

Installed Drivers

The Test & Measurement Tool can display your installed drivers. The three categories
of drivers are MATLAB Instrument Drivers, VXIplug&play Drivers, and IV, as
shown below under the expanded Instrument Drivers node.

Right-click the Instrument Drivers node to scan for installed drivers. The driver-type
nodes expand to include entries for each driver found by the scan. Note that for MATLAB
instrument drivers and VXIplug&play drivers, the installation of a driver requires only
the presence of a driver file. For IVI, installation involves an IVI configuration store; see
“Viewing the IVI Configuration Store” on page 1-19.

«): Test & Measurement Tool =] 3
File “iew Toolz Help
L} A
|l@| 2
Test & Measurement MATLAB Instrument Drivers View Help
k. Instrument Control Toolbax

— Iame Type Path

== Harchare - - -
agilert_33120amdd MATLAB interface o, |D:Workynatlab Tnatlsbtoolboxinstrument ..
agilert_3440amdd MATLAB interface o, |D:Workynatlab Tnatlsbtoolboxinstrument ..
agilert_e3648amdd MATLAR interface o, |D:Workynatlab Tnatlsbtoolboxinstrument ..
tektronix_tod=2024 mdd MATLAE interface o, |D:Workynatlab Tnatlsbitoolboxinstrument ..
tektronix_tod=210mdd MATLAE interface o, |D:Workynatlab Tnatlsbitoolboxinstrument ..

Last scan dater 28-Jul-2004 16:50:47 Ediit .. Scan |

4

The Test & Measurement Tool GUI includes embedded help. For further details about

the Test & Measurement Tool and its capabilities, see “Test & Measurement Tool
Overview” on page 18-2.

Viewing the IVl Configuration Store

An IVI configuration store greatly enhances instrument interchangeability by providing
the means to configure the relationship between drivers and I/0 interface references

outside of the application. For details of the components of an IVI configuration store, see
“IVI Configuration Store” on page 14-15.

1-19

1 Getting Started

1-20

Command-Line Configuration

You can use command-line functions to examine and configure your IVI configuration
store. To see what IVI configuration store elements are available, use instrhwinfo to
identify the existing logical names.

instrhwinfo("ivi"™)
ans =

LogicalNames:

ProgramlDs:

Modules:
ConfigurationServerVersion:
MasterConfigurationStore:

1VIRootPath:

{"MainScope®, "FuncGen"}

{"TekScope.TekScope*", "Agilent33250"}

{"ag3325b", "hpe363xa"}

"1.3.1.0"

"C:\Program Files\IVI\Data\
IviConfigurationStore.xml*

"C:\Program Files\IVI*

Use instrhwinfo with a logical name as an argument to see the details of that logical

name's configuration.

instrhwinfo("ivi", "MainScope*)

ans =
DriverSession:
HardwareAsset:
SoftwareModule:
I0ResourceDescriptor:
SupportedlnstrumentModels:
ModuleDescription:
ModuleLocation:

"TekScope.DriverSession”

"TekScope .Hardware*
"TekScope.Software*

"GPIBO::13::INSTR"

"TekScope 5000, 6000 and 7000 series”
"TekScope software module desc”

You create and configure elements in the IVI configuration store by using the IVI
configuration store object functions add, commit, remove, and update. For further
details, see the reference pages for these functions.

Using the Test & Measurement Tool

You can use the Test & Measurement Tool to examine or configure your IVI configuration

store. To open the tool, type:

tmtool

Expand the Instrument Drivers node and click 1VI.

Examining Your Hardware Resources

«): Test & Measurement Tool 10l =|
File Wiew Tools Help
)
|1& 58|
Test & Measurement L1 View Help
), Instrumert Control Taolhox o . R
— Configuration store: DA pplications\ W IDatalviConfigurationStore xml
=2 Harcware
L i - A
w Instrumert Objects Logical Mames Driver Sessions | Software Modules | Hardware Assets
Instrument Drivers Natme:
MATLAE Instrurmel |T kS. p——
Vidlplugaplay Drive ekScope. DriverSession
Description:
ITekSc:ope driver session description
Driver setup:
Software module: Hardware asset:
I TekScope Software LI I TekScope Hardware LI
Physical Marme “irtual Narne |
Channelt Channelt :I
Channel2 Channel2 =
Channel3 Channel3
Channeld Channeld
Math Math -
v cache r Interchange check
i Guery instrument status r Range check
A | Remove | [™ Record coercions [simulate
Ei—— O
4

You see a tab for each type of IVI configuration store element. This figure shows the
available driver sessions in the current IVI configuration store. For the selected driver
session, you can use any available software module or hardware asset. This figure shows
the configuration for the driver session TekScope.DriverSession, which uses the
software module TekScope . Software and the hardware asset TekScope .Hardware.

1-21

1 Getting Started

Communicating with Your Instrument

1-22

In this section...

“Instrument Control Session Examples” on page 1-22
“Communicating with a GPIB Instrument” on page 1-22
“Communicating with a GPIB-VXI Instrument” on page 1-23

“Communicating with a Serial Port Instrument” on page 1-24

“Communicating with a GPIB Instrument Using a Device Object” on page 1-25

Instrument Control Session Examples

Each example illustrates a typical instrument control session. The instrument control
session comprises all the steps you are likely to take when communicating with a
supported instrument. You should keep these steps in mind when constructing your own
instrument control applications.

The examples also use specific instrument addresses, SCPI commands, and so on. If your
instrument requires different parameters, or if it does not support the SCPI language,
you should modify the examples accordingly. For more information, see Using SCPI
Commands.

If you want detailed information about any functions that are used, refer to the functions
documentation. If you want detailed information about any properties that are used,
refer to the properties documentation.

Communicating with a GPIB Instrument

This example illustrates how to communicate with a GPIB instrument. The GPIB
controller is a National Instruments AT-GPIB card. The instrument is an Agilent 33120A
Function Generator, which is generating a 2 volt peak-to-peak signal.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating with an instrument via
GPIB, refer to “GPIB Overview” on page 4-2.

1 Create an interface object — Create the GPIB object g associated with a National
Instruments GPIB board with board index 0, and an instrument with primary
address 1.

Communicating with Your Instrument

g = gpib(*ni*,0,1);
Connect to the instrument — Connect g to the instrument.

fopen(g)
Configure property values — Configure g to assert the EOI line when the line

feed character is written to the instrument, and to complete read operations when
the line feed character is read from the instrument.

g-EOSMode = "read&write”

g-EOSCharCode = "LF*

Write and read data — Change the instrument's peak-to-peak voltage to three
volts by writing the Volt 3 command, query the peak-to-peak voltage value, and
then read the voltage value.

fprintf(g, "Volt 37)

fprintf(g, "Volt?")
data = fscanf(Q)
data =

+3.00000E+00

Disconnect and clean up — When you no longer need g, you should disconnect
it from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(Q)
delete(Q)
clear g

Communicating with a GPIB-VXI Instrument

This example illustrates how to communicate with a VXI instrument via a GPIB
controller using the VISA standard provided by Agilent Technologies.

The GPIB controller is an Agilent E1406A command module in VXI slot 0. The
instrument is an Agilent E1441A Function/Arbitrary Waveform Generator in VXI slot 1,
which is outputting a 2 volt peak-to-peak signal. The GPIB controller communicates with
the instrument over the VXI backplane.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating with an instrument using
VISA, refer to “VISA Overview” on page 5-2.

1-23

1 Getting Started

1-24

1 Create an instrument object — Create the VISA-GPIB-VXI object v associated
with the E1441A instrument located in chassis O with logical address 80.

v = visa("agilent”™, "GPIB-VX10::80::INSTR");
2 Connect to the instrument — Connect Vv to the instrument.

fopen(v)
3 Configure property values — Configure v to complete a read operation when the
line feed character is read from the instrument.

v.EOSMode = "read”
v.EOSCharCode = "LF*

4 Write and read data — Change the instrument's peak-to-peak voltage to three
volts by writing the Volt 3 command, query the peak-to-peak voltage value, and
then read the voltage value.

fprintf(v, "Volt 37)
fprintf(v, "Volt?*)
data = fscanf(v)
data =
+3.00000E+00
5 Disconnect and clean up — When you no longer need v, you should disconnect
it from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(v)
delete(v)
clear v

Communicating with a Serial Port Instrument

This example illustrates how to communicate with an instrument via the serial port.
The instrument is a Tektronix TDS 210 two-channel digital oscilloscope connected to the
serial port of a PC, and configured for a baud rate of 4800 and a carriage return (CR)
terminator.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating with an instrument
connected to the serial port, refer to “Serial Port Overview” on page 6-2.

Note: This example is Windows specific.

Communicating with Your Instrument

Create an instrument object — Create the serial port object s associated with the
COM1 serial port.

s = serial("COM1");
Configure property values — Configure s to match the instrument's baud rate
and terminator.

s.BaudRate = 4800

s.Terminator = "CR*

Connect to the instrument — Connect S to the instrument. This step occurs after
property values are configured because serial port instruments can transfer data
immediately after the connection is established.

fopen(s)

Write and read data — Write the *IDN? command to the instrument and then
read back the result of the command. *IDN? queries the instrument for identification
information.

fprintf(s, "*IDN?")

out = fscanf(s)

out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Disconnect and clean up — When you no longer need s, you should disconnect
it from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

Communicating with a GPIB Instrument Using a Device Object

This example illustrates how to communicate with a GPIB instrument through a device
object. The GPIB controller is a Measurement Computing card, and the instrument is an
Agilent 33120A Function Generator, which you set to produce a 1 volt peak-to-peak sine
wave at 1,000 Hz. Device objects use instrument drivers; this example uses the driver
agilent_33120a.mdd.

You should modify this example to suit your specific instrument control application
needs. If you want detailed information about communicating through device objects, see
“Device Objects” on page 12-2.

1-25

1 Getting Started

1-26

Create instrument objects — Create the GPIB object g associated with a
Measurement Computing GPIB board with board index 0, and an instrument with
primary address 4. Then create the device object d associated with the interface
object g, and with the instrument driver agi lent_33120a.mdd.

g gpib(*mcc*,0,4);
d icdevice("agilent_33120a.mdd",qg);
Connect to the instrument — Connect d to the instrument.

connect(d)

Call device object method — Use the devicereset method to set the generator
to a known configuration. The behavior of the generator for this method is defined in
the instrument driver.

devicereset(d)
Configure property values — Configure d to set the amplitude and frequency for
the signal from the function generator.

d.Amplitude = 1.00

d.AmplitudeUnits = “vpp~

d.Frequency = 1000

Disconnect and clean up — When you no longer need d and g, you should
disconnect from the instrument, remove the objects from memory, and remove them
from the MATLAB workspace.

disconnect(d)
delete([d g])
clear d g

General Preferences for Instrument Control

General Preferences for Instrument Control

In this section...

“Accessing General Preferences” on page 1-27

“MATLAB Instrument Driver Editor” on page 1-28
“MATLAB Instrument Driver Testing Tool” on page 1-29
“Device Objects” on page 1-30

“IVI Configuration Store” on page 1-31

“IVI Instruments” on page 1-31

Accessing General Preferences

You access the general preferences from MATLAB — on the Home tab, in the
Environment section, click Preferences. In the Preferences dialog box, there are
two options listed for Instrument Control under the MATLAB > General node, in
Confirmation Dialogs.

1-27

1 Getting

Started

4\ Preferences

Current Folder
Editor/Debugger

‘Warn before clearing the Command Window
Confirm when overwriting variables in MAT-files

4 MATLAB * MATLAB General Confirmation Dialogs Preferences
Apps
EoldeAnalyZer The following dialog boxes require user confirmation. Select a check box if you want that dialog box to appear.
olors
Command History State Dialog Box Description Tool
Command Window Warn before deleting Command History items Command History

Command Window
Current Folder

Figure Copy Template
Fonts Confirm when overwriting workspace variables via drag-and-drop Current Folder
4 General Confirm when upgrading an existing deployment project to the lat... Deployment Tool
rompt when editing files that do not exst itor
Prompt when editing files that d i Edi
rompt to exit debug mode when saving file itor
Promp it debug mode wh ing fil Edi
rompt to save on activate
Promp i GUIDE
GUI:JEEE Heap Memory Prompt to save on export GUIDE
Help 3 Confirm changing default callback implementation GUIDE
Keyboard = Confirm before exiting MATLAB General
Time Series Tools Prompt when editing drivers that do not exist Instrurment Control
Toolbars Prompt when editing driver tests that do not exist Instrurment Control
Variables Warn about MDCS requirement before creating a non-Local profile Parallel Computing Toolbox
onfirm when deleting profile arallel Computing Toolbox
Web Confirm when deleting profil Parallel Computing Toolb
. Wprkspace Confirm when restarting parallel pool on current cluster change Parallel Cormputing Toolbox
zlmulln::(Vision Svster Toolb ‘Warn about using a Simulink model with an infinite simulation sto... SystemTest
omputer Vision System Toolbox
DSP ;.rstem Toolb;rx Warn about using a Simulink model with unnamed logged signals SystemTest
Image Acquisition Toolbox Warn each time a new signal is added in the test case editor SystemTest
Image Processing Toolbox Warn each time a signal is deleted in the test case editor SystemTest
Instrument Control Toolbox Cenfirm when deleting variables Workspace
MATLAB Comnpiler
MATLAE Report Generator —
Parallel Computing Toolbox
S?msc.ape i i ’ Select all] ’ Clear all]
Simulink 3D Animation -
[oK] [Cancel] [Apply] ’ Help

1-28

MATLAB Instrument Driver Editor

The first option for Instrument Control is related to the MATLAB Instrument Driver

Editor (midedit).

When the option Prompt when editing drivers that do not exist is selected, if you
open the MATLAB Instrument Driver Editor while specifying a driver file that does not

exist, you get a prompt asking if you want to create a new driver file.

For example, the command

midedit ("newdriver®)

General Preferences for Instrument Control

generates the prompt

+) MATLAB Instrument Driver Editor B3
File: newdriver.mdd does not exist.
Do you want to create it?
I~ Do not show this prompt agair.

e |

If you select Do not show this prompt again, the corresponding check box in the
Preferences dialog box is cleared, in which case the MATLAB Instrument Driver Editor
creates new driver files without prompting. To reactivate the prompt, select the option on
the Preferences dialog box.

MATLAB Instrument Driver Testing Tool

The second option for Instrument Control is related to the MATLAB Instrument Driver
Testing Tool (midtest).

When the option Prompt when editing driver tests that do not exist is selected, if
you open the MATLAB Instrument Driver Testing Tool while specifying a driver test file
that does not exist, you get a prompt asking if you want to create a new test file.

For example, the command

midtest ("newtest"”)

generates the prompt

+) MATLAB Instrument Driver Testing Tool B3
Test newtest.xml does not exist.
Do you want to create it?
I~ Do not show this prompt agair.

e |

If you select Do not show this prompt again, the corresponding check box in the
Preferences dialog box is cleared, in which case the MATLAB Instrument Driver Testing
Tool creates new driver test files without prompting. To reactivate the prompt, check the
option on the Preferences dialog box.

1-29

1 Getting Started

Device Objects

You access other Instrument Control Preferences by selecting the Instrument Control
Toolbox node in the tree.

P
4\ Pr

eferences

F

MATLAB
Apps
Code Analyzer
Colors
Command History
Command Window
Current Folder
Editor/Debugger
Figure Copy Template
Fonts
General
MAT-Files
Confirmation Dialogs
Source Control
Java Heap Memory
GUIDE
Help
Keyboard
Time Series Tools
Toolbars
Variables
Web
Warkspace
Simulink
Computer Vision System Toolbox
D5P Systern Toolbox
Image Acquisiticn Teolbox
Image Processing Toolbox
instrument Control Toolbox!

MATLAB Compiler
MATLAE Report Generator
Parallel Computing Toelbox
Simscape

Simulink 30 Animation

-~

Instrument Control Toolbox Preferences

Device Objects

Minimum properties required to create group: |3
Minimum functions required to create group: |0
Default length for character array arguments: | 512
VI Cenfiguration Store

@ Master configuration store

() Configuration store:

VI Instruments
[] Show VI Instruments in TMTool.

Cancel

J

Apply

J

Help

1-30

The Device Objects section of the dialog box contains preferences related to the
construction and use of device objects for VXIplug&play and IVI-C drivers.

Here you set the minimum number of properties and functions required to create a
device object group, and the default size of character arrays passed as output arguments
to device object functions.

General Preferences for Instrument Control

Set the default size for these character arrays in the Preferences dialog box to ensure
that they are large enough to accommodate any string returned to them by any device
object functions. You can reduce the default character array size to avoid unnecessary
memory usage, as long as they are still large enough to accommodate any expected
strings.

IVI Configuration Store

The IVI Configuration Store section of the dialog box contains preferences related to
the construction and use of IVI configuration store objects when you are working in the
Command Window or in the Test & Measurement Tool (tmtool).

You can select either a master configuration store or a user-defined configuration store. If
you choose a user-defined configuration store, you must provide its file name.

IVI Instruments

You can use the IVI-C Wrappers functionality from the Test & Measurement Tool.
View the IVI-C nodes in the Tool by selecting this Show IVI Instruments in TMTool
preference in MATLAB.

For more information, see “IVI-C Class Compliant Wrappers in Test & Measurement
Tool” on page 14-23.

1-31

1 Getting Started

Interface and Property Help

In this section...

“instrhelp Function” on page 1-32
“propinfo Function” on page 1-33
“Instrsupport Function” on page 1-34
“Overview Help” on page 1-34
“Documentation Examples” on page 1-34

“Online Support” on page 1-35

instrhelp Function

You can use the instrhelp function to:

* Display command-line help for functions and properties.

+ List all the functions and properties associated with a specific instrument object.

An instrument object is not only for you to obtain this information. For example, to
display all functions and properties associated with a GPIB object, as well as the
constructor help, type:

instrhelp gpib
To display help for the EOIMode property, type:
instrhelp EOIMode

You can also display help for an existing instrument object. For example, to display help
for the MemorySpace property associated with a VISA-GPIB-VXI object, type:

v = visa("agilent”,"GPIB-VX10::80::INSTR");
out = instrhelp(v, "MemorySpace®);

Alternatively, you can display help via the Workspace browser by right-clicking an
instrument object and selecting Instrument Help from the context menu.

1-32

Interface and Property Help

propinfo Function

You can use the propinfo function to return the characteristics of the Instrument
Control Toolbox properties. For example, you can find the default value for any property
using this function. propinfo returns a structure containing the following fields:

Field Name Description

Type The property data type. Possible values are any, ASCI 1
value, cal lback, double, string, and struct.

Constraint The type of constraint on the property value. Possible values
are ASCI I value, bounded, cal Iback, enum, and none.

ConstraintValue The property value constraint. The constraint can be a range
of values or a list of character vector values.

DefaultValue The property default value.

ReadOnly The condition under which a property is read only.
Possible values are always, never, whi leOpen, and
whileRecording.

InterfaceSpecific |If the property is interface-specific, a 1 is returned. If the
property is supported for all interfaces, a O is returned.

For example, to display the property characteristics for the EOIMode property associated

with the GPIB object g,

g = gpib("ni*",0,2);
EOlinfo =

EOlinfo =
Type:
Constraint:
ConstraintValue:
DefaultVvalue:
ReadOnly:
InterfaceSpecific:

propinfo(g, "EOIMode ")

"string”
“enum*
{2x1 cell}
“on"
“never"*

1

This information tells you the following:

* The property value data type is a character vector.

* The property value is constrained as an enumerated list of values.

* There are two possible property values.

1-33

1 Getting Started

1-34

* The default value is on.
* The property can be configured at any time (it is never read-only).

* The property is not supported for all interfaces.

To display the property value constraints,

EOlinfo.ConstraintValue
ans =

“on*

"off"

instrsupport Function

Execute this function to get diagnostic information for all installed hardware adaptors on
your system. The information is stored in a text file, instrsupport.txt in your current
folder and you can use this information to troubleshoot issues.

Overview Help

The overview help lists the toolbox functions grouped by usage. You can display this
information by typing

help instrument
For the code for any function, type

type function_name

Documentation Examples

This guide provides detailed examples that show you how to communicate with

all supported interface types. These examples are contained in all the appropriate
sections throughout the documentation. For example, in the sections about Bluetooth
communication, you will find examples of communicating with Bluetooth instruments.

The examples use specific peripheral instruments, GPIB controllers, string commands,
address information, and so on. If your instrument accepts different string commands,

or if your hardware is configured to use different address information, you should modify
the examples accordingly.

Interface and Property Help

There are also some examples that show special applications of the Toolbox or show
complete workflows of certain features or interfaces. These appear in the Examples list
at the top of the Instrument Control Toolbox Documentation Center main page. You do
not need an instrument connected to your computer to use these tutorials as they use
prerecorded data.

Online Support
For online support of Instrument Control Toolbox software, visit the Web site http:/

www.mathworks.com/support/. This site includes documentation, examples, solutions,
downloads, system requirements, and contact information.

1-35

http://www.mathworks.com/support/
http://www.mathworks.com/support/

Instrument Control Session

The instrument control session consists of the steps you are likely to take when
communicating with your instrument. This chapter highlights some of the differences
between interface objects and device objects for each of these steps, to help you decide
which to use in communicating with your instrument. Whether you use interface objects
or device objects, the basic steps of the instrument control session remain the same, as
outlined in this chapter.

+ “Creating Instrument Objects” on page 2-2

+ “Connecting to the Instrument” on page 2-4

+ “Configuring and Returning Properties” on page 2-5

+ “Communicating with Your Instrument” on page 2-8

* “Disconnecting and Cleaning Up” on page 2-9

+ “Summary” on page 2-10

* “Instrument Control Toolbox Properties” on page 2-12

2

Instrument Control Session

Creating Instrument Objects

In this section...

“Overview” on page 2-2
“Interface Objects” on page 2-2
“Device Objects” on page 2-2

Overview

Instrument objects are the toolbox components you use to access your instrument. They
provide a gateway to the functionality of your instrument and allow you to control the
behavior of your application. The Instrument Control Toolbox software supports two
types of instrument objects:

+ Interface objects — Interface objects are associated with a specific interface standard
such as GPIB or VISA. They allow you to communicate with any instrument
connected to the interface.

+ Device objects — Device objects are associated with a MATLAB instrument driver.
They allow you to communicate with your instrument using properties and functions
defined in the driver for a specific instrument model.

Interface Objects

An interface object represents a channel of communication. For example, an interface
object might represent a device at address 4 on the GPIB, even though there is nothing
specific about what kind of instrument this may be.

To create an instrument object, you call the constructor for the type of interface (gpib,
serial, tcpip, udp, or visa), and provide appropriate interface information, such as
address for GPIB, remote host for TCP/IP, or port number for serial.

For detailed information on interface objects and how to create and use them, see
“Creating an Interface Object” on page 3-2.

Device Objects

A device object represents an instrument rather than an interface. As part of that
representation, a device object must also be aware of the instrument driver.

Creating Instrument Objects

You create a device object with the icdevice function. A device object requires a
MATLAB instrument driver and some form of instrument interface, which can be an
interface object, a VISA resource name, or an interface implied in an IVI configuration.

For detailed information on device objects and how to create and use them, see “Device
Objects” on page 12-2.

2

Instrument Control Session

Connecting to the Instrument

Before you can use an instrument object to write or read data, you must connect it to the
instrument. You connect an interface object to the instrument with the fopen function;
you connect a device object to the instrument with the connect function.

You can examine the Status property to verify that the instrument object is connected
to the instrument.

obj.Status
ans =
open

Some properties of the object are read-only while the object is connected and must be
configured before connecting. Examples of interface object properties that are read-
only when the object is connected include InputBufferSize and OutputBufferSize.
You can determine when a property is configurable with the propinfo function or by
referring to the properties documentation.

Configuring and Returning Properties

Configuring and Returning Properties

In this section...

“Configuring Property Names and Property Values” on page 2-5
“Returning Property Names and Property Values” on page 2-6

“Property Inspector” on page 2-6

Configuring Property Names and Property Values

You establish the desired instrument object behavior by configuring property values. You
can configure property values using the set function or the dot notation, or by specifying
property name/property value pairs during object creation. You can return property
values using the get function or the dot notation.

Interface objects possess two types of properties: base properties and interface-specific
properties. (These properties pertain only to the interface object itself and to the
interface, not to the instrument.) Base properties are supported for all interface

objects (serial port, GPIB, VISA-VXI, and so on), while interface-specific properties are
supported only for objects of a given interface type. For example, the BaudRate property
is supported only for serial port and VISA-serial objects.

Device objects also possess two types of properties: base properties and device-specific
properties. While device objects possess base properties pertaining to the object and
interface, they also possess any number of device-specific properties as defined in

the instrument driver for configuring the instrument. For example, a device object
representing an oscilloscope might posses such properties as DisplayContrast,
InputRange, and MeasurementMode. When you set these properties you are directly
configuring the oscilloscope settings.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

2

Instrument Control Session

2-6

Returning Property Names and Property Values

Once the instrument object is created, you can use the set function to return all its
configurable properties to a variable or to the command line. Additionally, if a property
has a finite set of character vector values, set returns these values.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Property Inspector

The Property Inspector enables you to inspect and set properties for one or more
instrument objects. It provides a list of all properties and displays their current values.

Settable properties in the list are associated with an editing device that is appropriate
for the values accepted by the particular property. For example, a callback configuration
GUI to set ErrorFcn, a pop-up menu to set RecordMode, and a text field to specify the
TimerPeriod. The values for read-only properties are grayed out.

You open the Property Inspector with the inspect function. Alternatively, you can open
the Property Inspector via the Workspace browser by right-clicking an instrument object
and selecting Call Property Inspector from the context menu, or by double-clicking the
object.

Configuring and Returning Properties

perty Inspector: GPIB

Boardindex 1 =
ByteQrder littlE ndian -
Bytesfwvailable 1]

BytezfvailableFcn @ [0x0 char array]
BytesfyvailableF cnCount 48 &
BytezfwvailableFcntdode eozCharCode -
BytesTo0utput 1]

CompareBits 8 &
CreationTime 0,738 &
EOIMaode on -
EO0SCharCode eos| LF

EDSMade none -
ErmorFen @ [0x0 char array]

D 1.0 &
InputBufferSize 21000 &
Mame GFIB1-4 &
Objectisibility on -
OutputBufferSize 21000 &
OutputE mptyFen @ [0x0 char array]
Frimarpddress 4 &

2-7

2

Instrument Control Session

Communicating with Your Instrument

In this section...

“Interface Objects and Instrument Commands” on page 2-8

“Device Objects and Instrument Drivers” on page 2-8

Interface Objects and Instrument Commands

Communicating with your instrument involves sending and receiving commands,
settings, responses, and data. The level of communication depends on the type of
instrument object you use.

To communicate through the interface object, you need to send instrument commands,
and you receive information as the instrument sends it. Therefore, you have to know
the syntax specific to the instrument itself. For example, if the instrument requires the
command "*RST" to initiate its action, then that is exactly the command that must be
sent to the interface object.

Text commands and binary data are sent directly to the instrument and received from
the instrument with such functions as fprintf, fwrite, fgets, fread, and others.

Device Objects and Instrument Drivers

To communicate through a device object, you access object properties with the set

and get commands, and you execute driver functions with the invoke command. The
invoke command for a device object employs methods and arguments defined by the
instrument driver. So using device objects does not require you to use instrument-specific
commands and syntax.

For information on creating, editing, and importing instrument drivers, see “MATLAB
Instrument Driver Editor Overview” on page 19-2.

Disconnecting and Cleaning Up

Disconnecting and Cleaning Up

In this section...

“Disconnecting an Instrument Object” on page 2-9
“Cleaning Up the MATLAB Workspace” on page 2-9

Disconnecting an Instrument Object

When you no longer need to communicate with the instrument, you should disconnect the
object. Interface objects are disconnected with the fclose function; device objects are
disconnected with the disconnect function.

You can examine the Status property to verify that the object is disconnected from the
instrument.

obj.Status
ans =
closed

Cleaning Up the MATLAB Workspace

When you no longer need the instrument object, you should remove it from memory with
the delete function.

delete(obj)

A deleted instrument object is invalid, which means that you cannot connect it to the
instrument. In this case, you should remove the object from the MATLAB workspace. To
remove instrument objects and other variables from the MATLAB workspace, use the
clear command.

clear obj

If you use clear on an object that is connected to an instrument, the object is removed
from the workspace but remains connected to the instrument. You can restore cleared
instrument objects to the MATLAB workspace with the instrfind function.

2-9

2 Instrument Control Session

Summary

In this section...

“Advantages of Using Device Objects” on page 2-10
“When to Use Interface Objects” on page 2-10

Advantages of Using Device Objects

Should you use interface objects or device objects to communicate with your instrument?
Generally, device objects make instrument control easier and they offer greater flexibility
to the user compared to using interface objects.

Because of the advantages offered by using device objects for communicating with your
instrument, you should use device objects whenever possible. Some of these advantages

are
* You do not need to know instrument-specific commands

* You can use standard VXIplug&play or IVI instrument drivers provided by your
instrument vendor or other party

* You can use a MATLAB instrument driver to control your instrument. To get a
MATLAB instrument driver, you can

Convert a VXIplug&play or IVI driver

Use a MATLAB driver that is shipped with the toolbox
Create it yourself or modify a similar driver

Install it from a third party, such as MATLAB Central

You can create, convert, or customize a MATLAB instrument driver with the
MATLAB Instrument Driver Editor tool (nidedit).

When to Use Interface Objects

In some circumstances, using device objects to communicate with your instrument would
be impossible or impractical. You might need to use interface objects if

* Your instrument does not have a standard instrument driver supported by the
Instrument Control Toolbox software.

2-10

Summary

* You are using a streaming application (typically serial, UDP, or TCP/IP interface) to
notify you of some occurrence.

* Your application requires frequent changes to communication channel settings.

2-11

2 Instrument Control Session

Instrument Control Toolbox Properties

2-12

The following properties are available in the toolbox.

ActuallLocation

Alias

BaudRate

BoardIndex
BreaklInterruptFcn
BusManagementStatus
ByteOrder
BytesAvailableFcn
BytesAvailableFcnCount
BytesAvailableFcnMode
BytesToOutput
Chassislndex
CompareBits
ConfirmationFcn
DataBits
DatagramAddress
DatagramPort
DatagramReceivedFcn
DatagramTerminateMode
DataTerminalReady
DriverName
DriverSessions
DriverType

EOIMode

EOSCharCode

EOSMode

ErrorFcn

Instrument Control Toolbox Properties

FlowControl
HandshakeStatus
HardwareAssets
Hwlndex

HwName
InputBufferSize
InputDatagramPacketSize
InstrumentModel
Interface
Interfacelndex
InterruptFcn
LANName
LocalHost
LocalPort
LocalPortMode
LogicalAddress
LogicalName
LogicalNames
ManufacturerlD
MappedMemoryBase
MappedMemorySize
MasterLocation
MemoryBase
Memorylncrement
MemorySize
MemorySpace
ModelCode

Name

NetworkRole
ObjectVisibility

2-13

2 Instrument Control Session

* OutputBufferSize
* OutputDatagramPacketSize
* OutputEmptyFcn

+ Parent

+ Parity

* PinStatus

+ PinStatusFcn

*+ Port

* PrimaryAddress

* ProcessLocation

* PublishedAPls

+ ReadAsyncMode

* RecordDetail

* RecordMode

* RecordName

* RecordStatus

* RemoteHost

* RemotePort

* RequestToSend

* Revision

* RsrcName

* SecondaryAddress
* SerialNumber

* ServerDescription
+ Sessions

+ Slot

+ SoftwareModules

+ SpecificationVersion
+ Status

+ StopBits

2-14

Instrument Control Toolbox Properties

Tag

Terminator
Timeout
TimerFcn
TimerPeriod
TransferDelay
TransferStatus
TriggerFcn
TriggerLine
TriggerType
Type

UserData
ValuesReceived
ValuesSent
Vendor

2-15

Using Interface Objects

The instrument control session using interface objects consists of all the steps described

in the following sections.

“Creating an Interface Object” on page 3-2
“Connecting to the Instrument” on page 3-5
“Configuring and Returning Properties” on page 3-6
“Writing and Reading Data” on page 3-14

“Using SCPI Commands” on page 3-25
“Disconnecting and Cleaning Up” on page 3-26

3 Using Interface Obijects

Creating an Interface Object

3-2

In this section...

“Object Creation Functions” on page 3-2

“Configuring Properties During Object Creation” on page 3-3

“Creating an Array of Instrument Objects” on page 3-3

Object Creation Functions

To create an interface object, you call functions called object creation functions (or object
constructors). These files are implemented using MATLAB object-oriented programming
capabilities, which are described in the MATLAB documentation.

Interface Object Creation Functions

Constructor Description

gpib Create a GPIB object.

serial Create a serial port object.

tcpip Create a TCPIP object.

udp Create a UDP object.

visa Create a VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, or VISA-serial object.
bluetooth Create a Bluetooth object.

i2c Create an I12C object.

spi Create a SPI object.

You can find out how to create an interface object for a particular interface and adaptor
with the ObjectConstructorName field of the instrhwinfo function. For example, to
find out how to create a GPIB object for a National Instruments GPIB controller,

out = instrhwinfo("gpib®, " ni");
out.ObjectConstructorName
ans =

‘gpib("ni®, 0, 1);°

Creating an Interface Object

Configuring Properties During Object Creation

Instrument objects contain properties that reflect the functionality of your instrument.
You control the behavior of your instrument control application by configuring values for
these properties.

As described in “Configuring and Returning Properties” on page 3-6, you configure
properties using the set function or the dot notation. You can also configure properties
during object creation by specifying property name/property value pairs. For example,
the following command configures the EOSMode and EOSCharCode properties for the
GPIB object g:

g = gpib("ni*,0,1, "EOSMode™, "read”, "EOSCharCode" , "CR");
If you specify an invalid property name or property value, the object is not created. For

detailed property descriptions, refer to the properties documentation.

Creating an Array of Instrument Objects

In the MATLAB workspace, you can create an array from existing variables by
concatenating those variables. The same is true for instrument objects. For example,
suppose you create the GPIB objects g1 and g2:

gpib("ni",0,1);
gpib("ni*,0,2);

gl
g2

You can now create an instrument object array consisting of g1 and g2 using the usual
MATLAB syntax. To create the row array X:

x = [g1 g2]

Instrument Object Array
Index: Type: Status: Name:
1 gpib closed GP1B0O-1
2 gpib closed GP1B0-2

To create the column array y:
y = [91;92];

Note that you cannot create a matrix of instrument objects. For example, you cannot
create the matrix

3 Using Interface Obijects

z = [91 g2;91 g2];
??? Error using ==> gpib/vertcat
Only a row or column vector of instrument objects can be created.

Depending on your application, you might want to pass an array of instrument objects
to a function. For example, using one call to the set function, you can configure both gl
and g2 to the same property value.

X.EOSMode = "read”

Refer to the functions documentation to see which functions accept an instrument object
array as an input argument.

Connecting to the Instrument

Connecting to the Instrument

Before you can use the instrument object to write or read data, you must connect it to the
instrument whose address or port is specified in the creation function. You connect an
interface object to the instrument with the fopen function.

fopen(g)

Some properties are read-only while the object is connected and must be

configured before using fopen. Examples include the InputBufferSize and the
OutputBufferSize properties. You can determine when a property is configurable with
the propinfo function, or by referring to the properties documentation.

Note You can create any number of instrument objects. However, at any time, you can
connect only one instrument object to an instrument with a given address or port.

You can examine the Status property to verify that the instrument object is connected
to the instrument.

g-Status
ans =
open

As illustrated below, the connection between the instrument object and the instrument is
complete, and you can write and read data.

MATLAB GPIB Board Instrument
g=gpib('ni',0,1); NI PCLGPIE 01.00 000000
fopen(g) B O 0000

[T

3 Using Interface Obijects

Configuring and Returning Properties

3-6

In this section...

“Base and Interface-Specific Properties” on page 3-6
“Returning Property Names and Property Values” on page 3-6
“Configuring Property Values” on page 3-9

“Specifying Property Names” on page 3-9

“Default Property Values” on page 3-9

“Using Tab Completion for Functions” on page 3-10

“Property Inspector” on page 3-12

Base and Interface-Specific Properties

You establish the desired instrument object behavior by configuring property values. You
can configure property values using the set function or the dot notation, or by specifying
property name/property value pairs during object creation. You can return property
values using the get function or the dot notation.

Interface objects possess two types of properties:

* Base Properties: These are supported for all interface objects (serial port, GPIB, VISA-
VXI, and so on). For example, the BytesToOutput property is supported for all
interface objects.

+ Interface-Specific Properties: These are supported only for objects of a given interface
type. For example, the BaudRate property is supported only for serial port and VISA-
serial objects.

Returning Property Names and Property Values

Once the instrument object is created, you can set configurable properties. Additionally,
if a property has a finite set of character vector values, then set also returns these
values.

For example, the configurable properties for the GPIB object g are shown below. The
base properties are listed first, followed by the GPIB-specific properties.

g = gpib("ni",0,1);
set(Q)

Configuring and Returning Properties

ByteOrder: [{littleEndian} | bigEndian]
BytesAvailableFcn

BytesAvai lableFcnCount
BytesAvailableFcnMode: [{eosCharCode} | byte]
ErrorFcn

InputBufferSize

Name

OutputBufferSize

OutputEmptyFcn

RecordDetail: [{compact} | verbose]
RecordMode: [{overwrite} | append | index]
RecordName

Tag

Timeout

TimerFcn

TimerPeriod

UserData

GPIB specific properties:

BoardIndex

CompareBits

EOIMode: [{on} | off]

EOSCharCode

EOSMode: [{none} | read | write | read&write]
PrimaryAddress

SecondaryAddress

You can display one or more properties and their current values to a variable or to the
command line.

For example, all the properties and their current values for the GPIB object g are shown
below. The base properties are listed first, followed by the GPIB-specific properties.

get(9)
ByteOrder = littleEndian

BytesAvailable = 0
BytesAvailableFcn =
BytesAvailableFcnCount = 48
BytesAvailableFcnMode = eosCharCode
BytesToOutput = O

ErrorFcn =

InputBufferSize = 512

Name = GPIBO-1

OutputBufferSize = 512
OutputEmptyFcn =

3 Using Interface Obijects

RecordDetail = compact
RecordMode = overwrite
RecordName = record.txt
RecordStatus = off
Status = closed

Tag =

Timeout = 10

TimerFcn =

TimerPeriod = 1
TransferStatus = idle
Type = gpib

UserData = []
ValuesReceived = 0
ValuesSent = 0

GPIB specific properties:
BoardIndex = 0
BusManagementStatus = [1x1 struct]
CompareBits = 8

EOIMode = on

EOSCharCode = LF

EOSMode = none

HandshakeStatus = [1x1 struct]
PrimaryAddress = 1

SecondaryAddress 0

To display the current value for one property, you supply the property name to get.

g-OutputBufferSize
ans =
512

To display the current values for multiple properties, you include the property names as
elements of a cell array.

g.BoardIndex
ans =

0]

g.TransferStatus
ans =
“idle”

You can also use the dot notation to display a single property value.

g-PrimaryAddress

Configuring and Returning Properties

ans =
1

Configuring Property Values

You can configure property values using the object

g-EOSMode = “read~

To configure values for multiple properties, you can set each one as follows.

g.EOSCharCode = "CR*"
g-Name = "Testl-gpib*

Note that you can configure only one property value at a time using the dot notation.

In practice, you can configure many of the properties at any time while the instrument
object exists — including during object creation. However, some properties are not
configurable while the object is connected to the instrument or when recording
information to disk. Use the propinfo function, or refer to the properties documentation
to understand when you can configure a property.

Specifying Property Names

Instrument object property names are presented using mixed case. While this makes
property names easier to read, you can use any case you want when specifying property
names. Additionally, you need use only enough letters to identify the property name
uniquely, so you can abbreviate most property names. For example, you can configure the
EOSMode property in any of these ways.

g-EOSMode "read*”
g.-eosmode "read*”
g-EOSM = "read-

However, when you include property names in a file, you should use the full property
name. This practice can prevent problems with future releases of the Instrument Control
Toolbox software if a shortened name is no longer unique because of the addition of new
properties.

Default Property Values

If you do not explicitly define a value for a property, then the default value is used. All
configurable properties have default values.

3 Using Interface Obijects

3-10

Note Default values are provided for all instrument object properties. For serial port
objects, the default values are provided by your operating system. For GPIB and VISA
instrument objects, the default values are provided by vendor-supplied tools. However,
these settings are overridden by your MATLAB code, and will have no effect on your
instrument control application.

If a property has a finite set of character vector values, then the default value is enclosed
by {} (curly braces). For example, the default value for the EOSMode property is none.

g.EOSMode
ans =

none

You can also use the propinfo function, or refer to the functions documentation to find
the default value for any property.

Using Tab Completion for Functions

To get a list of options you can use on the function, press the Tab key after entering a
function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For example, when you create a gpib object, you can get a list of
installed vendors:

g = gpib(”

When you press Tab after the parentheses and single quote, as shown here, the list of
installed GPIB vendors displays, such as keysight, ics, mcc, and ni.

The format for the GPIB object constructor function is:

g = gpib("vendor® ,boardindex,primaryaddress)

When you press Tab where a field should appear, you get the list of options for that
field. The other interface objects, such as Bluetooth, Serial, TCP/IP, etc., also include this
capability on their object constructor functions.

You can also get the values for property-value pairs. For example, to get the possible
terminator values when creating a serial object, type:

s = serial("COM1*", "Terminator”®, "

Configuring and Returning Properties

Press Tab after typing the single quote after Terminator to get the possible values for
that property, as shown here.

b 3
e
e m
e
CR/LF
b 3
LF
e
. LF/CR
ﬁ}; »» 2 = gerial ("COM1', 'Terminator',’

Many of the other toolbox functions also have tab completion. For example, when using
the fread function you can specify the precision type using tab completion.

data = fread(s,256,"
Press Tab after typing the single quote after the size (256 values in this example), since

precision is the next argument the fread function takes, to get the possible values for
the precision types, such as "double®, "intl6", etc.

3-11

3 Using Interface Obijects

3-12

>
»» 3 = gerial ("CCHM1'")

Serial Port Object : Serial-COMI1

Communication Settings

Port: CCM1
BaudRate: 9600
Terminator: 'LE'

Communication State

Status: i

RecordStatus: M -

double |_

Eead/Write State float [
ITransferStatus: float3z

BytesAvailable: floatsd

ValuesBReceived: ;
int
ValuesSent:
intlée

int32 -

t »» data = fread(s,25a6,'

When the list of possible values is long, a scroll bar appears in the pop-up window, as
shown in this example.

Property Inspector

The Property Inspector enables you to inspect and set properties for one or more
instrument objects. It provides a list of all properties and displays their current values.

Settable properties in the list are associated with an editing device that is appropriate
for the values accepted by the particular property. For example, a callback configuration
GUI to set ErrorFcn, a pop-up menu to set RecordMode, and a text field to specify the
TimerPeriod. The values for read-only properties are grayed out.

Configuring and Returning Properties

You open the Property Inspector with the inspect function. Alternatively, you can open
the Property Inspector via the Workspace browser by right-clicking an instrument object
and selecting Call Property Inspector from the context menu, or by double-clicking the

object.

Property Inspector: GPIB

Boardindex
ByteQrder

CompareBits
EOIMaode
E0SMode
ErarFen

D

Mame

= =

Bytesfwvailable

BytezfvailableFcn
BytesfyvailableF cnCount
BytezfwvailableFcntdode
BytesTo0utput

CreationTime

EO0SCharCode

InputBufferSize

Objectisibility
OutputBufferSize
OutputE mptyFen
Frimarpddress

%

1
littleE ridian

1]

[0x0 char array]
48
eozCharCode
1]

g

0.738

on

LF

none

[0x0 char array]
1.0

21000
GPIB1-4

on

21000

[0x0 char array]
4

4

%% %

4

3-13

3 Using Interface Obijects

Writing and Reading Data

3-14

In this section...

“Before Performing Read/Write Operations” on page 3-14

“Writing Data” on page 3-15

“Reading Data” on page 3-20

Before Performing Read/Write Operations

Communicating with your instrument involves writing and reading data. For example,
you might write a text command to a function generator that queries its peak-to-peak
voltage, and then read back the voltage value as a double-precision array.

Before performing a write or read operation, you should consider these three questions:

What is the process by which data flows from the MATLAB workspace to the
instrument, and from the instrument to the MATLAB workspace?

The Instrument Control Toolbox automatically manages the data transferred between
the MATLAB workspace and the instrument. For many common applications, you can
ignore the buffering and data flow process. However, if you are transferring a large
number of values, executing an asynchronous read or write operation, or debugging
your application, you might need to be aware of how this process works.

Is the data to be transferred binary (numerical) or text (ASCII)?

For many instruments, writing text data means writing string commands that change
instrument settings, prepare the instrument to return data or status information, and
so on. Writing binary data means writing numerical values to the instrument such as
calibration or waveform data.

Will the write or read function block access to the MATLAB Command Window?

You control access to the MATLAB Command Window by specifying whether a read
or write operation is synchronous or asynchronous. A synchronous operation blocks
access to the command line until the read or write function completes execution. An
asynchronous operation does not block access to the command line, and you can issue
additional commands while the read or write function executes in the background.

Writing and Reading Data

There are other issues to consider when you read and write data, like the conditions
under which a read or write operation completes. These issues vary depending upon the
supported interface and are described in the respective interface-specific chapters.

Writing Data

Functions Associated with Writing Data

Function Name Description

binblockwrite Write binblock data to the instrument.
fprintf Write text to the instrument.

fwrite Write binary data to the instrument.
stopasync Stop asynchronous read and write operations.

Properties Associated with Writing Data

Property Name Description

BytesToOutput Indicate the number of bytes currently in the output buffer.

OutputBufferSize |Specify the size of the output buffer in bytes.

Timeout Specify the waiting time to complete a read or write operation.

TransferStatus Indicate if an asynchronous read or write operation is in
progress.

ValuesSent Indicate the total number of values written to the instrument.

Output Buffer and Data Flow

The output buffer is computer memory allocated by the instrument object to store data
that is to be written to the instrument. The flow of data from the MATLAB workspace to
your instrument follows these steps:

1 The data specified by the write function is sent to the output buffer.

2 The data in the output buffer is sent to the instrument.

The OutputBufferSize property specifies the maximum number of bytes that you can
store in the output buffer. The BytesToOutput property indicates the number of bytes
currently in the output buffer. The default values for these properties are:

g = gpib("ni*,0,1);

3-15

3 Using Interface Obijects

3-16

g-OutputBufferSize
ans =

512
g-BytesToOutput

ans =

0

If you attempt to write more data than can fit in the output buffer, an error is returned

and no data is written.

Note When writing data, you might need to specify a value, which can consist of one
or more bytes. This is because some write functions allow you to control the number of
bits written for each value and the interpretation of those bits as character, integer or

floating-point values. For example, if you write one value from an instrument using the

int32 format, then that value consists of four bytes.

For example, suppose you write the string command *IDN? to an instrument using the

fprintf function. As shown below, the string is first written to the output buffer as six

values.

MATLAB

g=gpib('ni’,0,1);
g.E0SMode="write';
fopen(a)

fprintf(g, '*IDN?")

Output Buffer
*TDNT
fohels 1 |
six values
six bytes

[] Bytes used during write
|:| Bytes unused during write

The *IDN? command consists of six values because the End-Of-String character is
written to the instrument, as specified by the EOSMode and EOSCharCode properties.
Moreover, the default data format for the Fprintf function specifies that one value
corresponds to one byte.

Writing and Reading Data

As shown below, after the string is stored in the output buffer, it is then written to the
instrument.

Output Buffer GPIB Board Instrument

*IDN?

]] |—:=-NIPCI-GP Wﬂm['””””

six values I
six bytes

I D|N?0

] Bytes used during write
|:| Bytes unused during write

Writing Text Data Versus Writing Binary Data

For many instruments, writing text data means writing string commands that change
instrument settings, prepare the instrument to return data or status information, and
so on. Writing binary data means writing numerical values to the instrument such as

calibration or waveform data.

You can write text data with the Fprintf function. By default, fprintf uses the %s\n
format, which formats the data as a string and includes the terminator. You can write
binary data with the fwrite function. By default, fwrite writes data using the uchar
precision, which translates the data as unsigned 8-bit characters. Both of these functions
support many other formats and precisions, as described in their reference pages.

The following example illustrates writing text data and binary data to a Tektronix TDS
210 oscilloscope. The text data consists of string commands, while the binary data is a
waveform that is to be downloaded to the scope and stored in its memory:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1. The size of the output buffer is increased to accommodate the
waveform data. You must configure the OutputBufferSize property while the
GPIB object is disconnected from the instrument.

g = gpib("ni*,0,1);
g-OutputBufferSize = 3000;
2 Connect to the instrument — Connect g to the instrument.

3-17

3 Using Interface Obijects

3-18

fopen(g)
3 Write and read data — Write string commands that configure the scope to store

binary waveform data in memory location A.

fprintf(g, "DATA:DESTINATION REFA®);
fprintf(g, "DATA:ENCDG SRPbinary®);
fprintf(g, "DATA:WIDTH 1%);
fprintf(g, "DATA:START 1%);

Create the waveform data.

t = linspace(0,25,2500);
data = round(sin(t)*90 + 127);

Write the binary waveform data to the scope.

cmd = double("CURVE #425007);
fwrite(g, [cmd data]);

The ValuesSent property indicates the total number of values that were written to
the instrument.

g-ValuesSent
ans =
2577
4 Disconnect and clean up — When you no longer need g, you should disconnect
it from the instrument, remove it from memory, and remove it from the MATLAB
workspace.

fclose(Q)

delete(Q)
clear g

Synchronous Versus Asynchronous Write Operations

By default, all write functions operate synchronously and block the MATLAB Command
Window until the operation completes. To perform an asynchronous write operation, you
supply the async input argument to the fprintf or fwrite function.

For example, you use the following syntax to modify the fprintf commands used in the
preceding example to write text data asynchronously.

fprintf(g, "DATA:DESTINATION REFA","async");

Writing and Reading Data

Similarly, you use the following syntax to modify the fwrite command used in the
preceding example to write binary data asynchronously.

fwrite(g, [cmd data], "async®);

You can monitor the status of the asynchronous write operation with the
TransferStatus property. A value of 1dle indicates that no asynchronous operations
are in progress.

g-TransferStatus
ans =
write

You can use the BytesToOutput property to indicate the numbers of bytes that exist in
the output buffer waiting to be written to the instrument.

g-BytesToOutput

ans =
2512

3-19

3 Using Interface Obijects

Reading Data

Functions Associated with Reading Data

Function Name

Description

binblockread Read binblock data from the instrument.

fgetl Read one line of text from the instrument and discard the
terminator.

fgets Read one line of text from the instrument and include the
terminator.

fread Read binary data from the instrument.

fscanf Read data from the instrument, and format as text.

readasync Read data asynchronously from the instrument.

scanstr Read data from the instrument, format as text, and parse

stopasync Stop asynchronous read and write operations.

Properties Associated with Reading Data

Property Name

Description

BytesAvailable

Indicate the number of bytes available in the input buffer.

InputBufferSize Specify the size of the input buffer in bytes.

ReadAsyncMode Specify whether an asynchronous read is continuous or
manual (serial port, TCPIP, UDP, and VISA-serial objects
only).

Timeout Specify the waiting time to complete a read or write
operation.

TransferStatus Indicate if an asynchronous read or write operation is in
progress.

ValuesReceived Indicate the total number of values read from the

instrument.

Input Buffer and Data Flow

The input buffer is computer memory allocated by the instrument object to store data
that is to be read from the instrument. The flow of data from your instrument to the
MATLAB workspace follows these steps:

3-20

Writing and Reading Data

1 The data read from the instrument is stored in the input buffer.
2 The data in the input buffer is returned to the MATLAB variable specified by a read
function.

The InputBufferSize property specifies the maximum number of bytes that you
can store in the input buffer. The BytesAvai lable property indicates the number of
bytes currently available to be read from the input buffer. The default values for these
properties are:

g = gpib("ni*,0,1);
g- InputBufferSize

ans =

512
g-BytesAvailable

ans =
0

If you attempt to read more data than can fit in the input buffer, an error is returned and
no data is read.

For example, suppose you use the Fscanf function to read the text-based response of
the *IDN? command previously written to the instrument. The data is first read into the
input buffer.

Instrument GPIE Board Input Buffer
data
’me 1000100 NI PCI-GPIB—}. |-
[SIR SRR SN &
[T

. Bytes used during read
[] Bytes unused during read

Note that for a given read operation, you might not know the number of bytes returned

by the instrument. Therefore, you might need to preset the InputBufferSize property
to a sufficiently large value before connecting the instrument object.

3-21

3 Using Interface Obijects

3-22

As shown below, after the data is stored in the input buffer, it is then transferred to the
output variable specified by fscanf.

Input Buffer MATLAB

. I : l ‘—) out=fscanf(q)

. Bytes used during read
|:| Bytes unused during read

Reading Text Data Versus Reading Binary Data

For many instruments, reading text data means reading string data that reflect
instrument settings, status information, and so on. Reading binary data means reading
numerical values from the instrument.

You can read text data with the fgetl, fgets, and fscanf functions. By default,

these functions return data using the %c format. You can read binary data with the
fread function. By default, fread returns numerical values as double-precision arrays.
Both the fscanf and fread functions support many other formats and precisions, as
described in their reference pages.

The following example illustrates reading text data and binary data from a Tektronix
TDS 210 oscilloscope, which is displaying a periodic input signal with a nominal
frequency of 1.0 kHz.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib(*ni*,0,1);
2 Connect to the instrument — Connect g to the instrument.

fopen(g)
3 Write and read data — Write the *IDN? command to the scope, and read back the

identification information as text.

fprintf(g, "*IDN?")

Writing and Reading Data

idn = fscanf(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Configure the scope to return the period of the input signal, and then read the period
as a binary value. The output display format is configured to use short exponential
notation for doubles.

fprintf(g, "MEASUREMENT :MEAS1:TYPE PERIOD®)
fprintf(g, "MEASUREMENT :MEAS1:VALUE?")
format short e
period = fread(g,9)"
period =
49 46 48 48 54 69 45 51 10

period consists of positive integers representing character codes, where 10 is a line
feed. To convert the period value to a string, use the char function.

char(period)
ans =
1.006E-3

The ValuesReceived property indicates the total number of values that were read
from the instrument.

g-ValuesReceived
ans =
65
Disconnect and clean up — When you no longer need g, you should disconnect
it from the instrument, remove it from memory, and remove it from the MATLAB

workspace.

fclose(Q)
delete(Q)
clear g

Synchronous Versus Asynchronous Read Operations

The fgetl, Fgets, fscanf, and fread functions operate synchronously and block the
MATLAB Command Window until the operation completes. To perform an asynchronous
read operation, you use the readasync function. readasync asynchronously reads data
from the instrument and stores it in the input buffer. To transfer the data from the input
buffer to a MATLAB variable, you use one of the synchronous read functions.

3-23

3 Using Interface Obijects

3-24

Note For serial port, TCPIP, UDP, and VISA-serial objects, you can also perform
an asynchronous read operation by configuring the ReadAsyncMode property to
continuous.

For example, to modify the preceding example to asynchronously read the scope's
identification information, you would issue the readasync function after the *IDN?
command is written.

fprintf(g, "*IDN?")
readasync(Qg)

You can monitor the status of the asynchronous read operation with the
TransferStatus property. A value of idle indicates that no asynchronous operations
are in progress.

g-TransferStatus
ans =
read

You can use the BytesAvai lable property to indicate the number of bytes that exist in
the input buffer waiting to be transferred to the MATLAB workspace.

g-BytesAvailable

ans =
56

When the read completes, you can transfer the data as text to a MATLAB variable using
the Fscanf function.

idn = fscanf(g);

Using SCPI Commands

Using SCPI Commands

Standard Commands for Programmable Instruments or SCPI commands are ASCIIT
based set of pre-defined commands and responses. They use the same data format across
all SCPI compliant instruments. You can use SCPI commands with the Instrument
Control Toolbox and the MATLAB programming environment to control multiple
instruments using similar functions. You can access a common functionality in
instruments without changing your programming environment. SCPI commands

are simple and flexible and accept a range of parameter formats. This allows you

to easily program your instrument. The response to SCPI commands can be status
information or data. You can define the format of the data independent of the device or
the measurement. For more information refer to the IVI Foundation SCPI Specifications.

Commonly Used SCPI Commands

Commands Functionality

*CLS Clear the status

*ESE Enable standard event

*ESE? Query if event is enabled and standard
*ESR? Query standard event status register
*IDN? Query instrument identification
*OPC Operation complete

*OPC? Query if operation is complete

*RST Instrument reset

*SRE Enable service request

*SRE? Query id service request is enabled
*STB? Query read of status byte

*TST? Query instrument self test

*WAI Wait to continue

3-25

http://www.ivifoundation.org/docs/SCPI-99.PDF

3 Using Interface Obijects

Disconnecting and Cleaning Up

3-26

In this section...

“Disconnecting an Instrument Object” on page 3-26
“Cleaning Up the MATLAB Workspace” on page 3-26

Disconnecting an Instrument Object

When you no longer need an instrument object, you should disconnect it from the
instrument, and clean up the MATLAB workspace by removing the object from memory
and from the workspace.

To disconnect your communication with the instrument, use the fclose function.
fclose(Q)

You can examine the Status property to verify that the object and the instrument are
disconnected.

g-Status

ans =
closed

After Fclose is issued, the resources associated with g are made available, and you can
once again connect an instrument object to the instrument with fopen.

Cleaning Up the MATLAB Workspace

To remove the instrument object from memory, use the delete function.
delete(Q)

A deleted instrument object is invalid, which means that you cannot connect it to the
instrument. In this case, you should remove the object from the MATLAB workspace. To
remove instrument objects and other variables from the MATLAB workspace, use the
clear command.

clear g

Disconnecting and Cleaning Up

If you use clear on an object that is connected to an instrument, the object is removed
from the workspace but remains connected to the instrument. You can restore cleared
instrument objects to the MATLAB workspace with the instrfind function.

3-27

Controlling Instruments Using GPIB

This chapter describes specific issues related to controlling instruments that use the

GPIB interface.

“GPIB Overview” on page 4-2

“Creating a GPIB Object” on page 4-13
“Configuring the GPIB Address” on page 4-16
“Writing and Reading Data” on page 4-18
“Events and Callbacks” on page 4-29
“Triggers” on page 4-36

“Serial Polls” on page 4-39

4 Controlling Instruments Using GPIB

GPIB Overview

4-2

In this section...

“What Is GPIB?” on page 4-2

“Important GPIB Features” on page 4-3
“GPIB Lines” on page 4-4

“Status and Event Reporting” on page 4-8

What Is GPIB?

GPIB is a standardized interface that allows you to connect and control multiple devices
from various vendors. GPIB is also referred to by its original name HP-IB, or by its IEEE
designation IEEE-488. The GPIB functionality has evolved over time, and is described in
several specifications:

+ The IEEE 488.1-1975 specification defines the electrical and mechanical
characteristics of the interface and its basic functional characteristics.

* The IEEE-488.2-1987 specification builds on the IEEE 488.1 specification to define
an acceptable minimum configuration and a basic set of instrument commands and
common data formats.

* The Standard Commands for Programmable Instrumentation (SCPI) specification
builds on the commands given by the IEEE 488.2 specification to define a standard
instrument command set that can be used by GPIB or other interfaces.

For many GPIB applications, you can communicate with your instrument without
detailed knowledge of how GPIB works. Communication is established through a GPIB
object, which you create in the MATLAB workspace.

If your application is straightforward, or if you are already familiar with the topics
mentioned above, you might want to begin with “Creating a GPIB Object” on page
4-13. If you want a high-level description of all the steps you are likely to take when
communicating with your instrument, refer to “Creating Instrument Objects” on page
2-2.

Some of the GPIB functionality is required for all GPIB devices, while other GPIB
functionality is optional. Additionally, many devices support only a subset of the SCPI
command set, or use a different vendor-specific command set. Refer to your device
documentation for a complete list of its GPIB capabilities and its command set.

GPIB Overview

Important GPIB Features

The important GPIB features are described below. For detailed information about GPIB
functionality, see the appropriate references in the Appendix B.

Bus and Connector

The GPIB bus is a cable with two 24-pin connectors that allow you to connect multiple
devices to each other. The bus and connector have these features and limitations:

* You can connect up to 15 devices to a bus.

* You can connect devices in a star configuration, a linear configuration, or a
combination of configurations.

* To achieve maximum data transfer rates, the cable length should not exceed 20
meters total or an average of 2 meters per device. You can eliminate these restrictions
by using a bus extender.

GPIB Devices

Each GPIB device must be some combination of a Talker, a Listener, or a Controller. A
Controller is typically a board that you install in your computer. Talkers and Listeners
are typically instruments such as oscilloscopes, function generators, multimeters, and so
on. Most modern instruments are both Talkers and Listeners.

+ Talkers — A Talker transmits data over the interface when addressed to talk by the
Controller. There can be only one Talker at a time.

+ Listeners — A Listener receives data over the interface when addressed to listen
by the Controller. There can be up to 14 Listeners at a given time. Typically, the
Controller is a Talker while one or more instruments on the GPIB are Listeners.

+ Controllers — The Controller specifies which devices are Talkers or Listeners. A
GPIB system can contain multiple Controllers. One of them is designated the System
Controller. However, only one Controller can be active at a given time. The current
active controller is the Controller-In-Charge (CIC). The CIC can pass control to an idle
Controller, but only the System Controller can make itself the CIC.

When the Controller is not sending messages, then a Talker can send messages.
Typically, the CIC is a Listener while another device is enabled as a Talker.

Each Controller is identified by a unique board index number. Each Talker/Listener
is identified by a unique primary address ranging from 0 to 30, and by an optional
secondary address, which can be 0 or can range from 96 to 126.

4-3

4 Controlling Instruments Using GPIB

4-4

GPIB Data

There are two types of data that can be transferred over GPIB: instrument data and
interface messages:

* Instrument data — Instrument data consists of vendor-specific commands that
configure your instrument, return measurement results, and so on. For a complete list
of commands supported by your instrument, refer to its documentation.

+ Interface messages — Interface messages are defined by the GPIB standard and
consist of commands that clear the GPIB bus, address devices, return self-test results,
and so on.

Data transfer consists of one byte (8 bits) sent in parallel. The data transfer rate across
the interface is limited to 1 megabyte per second. However, this data rate is usually not
achieved in practice, and is limited by the slowest device on the bus.

GPIB Lines

GPIB consists of 24 lines, which are shared by all instruments connected to the bus. 16
lines are used for signals, while eight lines are for ground. The signal lines are divided
into these groups:

* Eight data lines

+ Five interface management lines
* Three handshake lines

The signal lines use a low-true (negative) logic convention with TTL levels. This means
that a line is low (true or asserted) when it is a TTL low level, and a line is high (false
or unasserted) when it is a TTL high level. The pin assignment scheme for a GPIB
connector is shown below.

12 1
24 13
o
GPIB Pin and Signal Assignments
Pin |Label Signal Name Pin Label Signal Name
1 DIO1 Data transfer 13 DIO5 Data transfer

GPIB Overview

Pin |Label Signal Name Pin Label Signal Name

2 DIO2 Data transfer 14 DIO6 Data transfer
3 DIO3 Data transfer 15 DIO7 Data transfer
4 DIO4 Data transfer 16 DIOS Data transfer
5 EOI End Or Identify 17 REN Remote Enable
6 DAV Data Valid 18 GND DAYV ground

7 NRFD |Not Ready For Data 19 GND NRFD ground
8 NDAC |Not Data Accepted 20 GND NDAC ground
9 IFC Interface Clear 21 GND IFC ground
10 SRQ Service Request 22 GND SRQ ground
11 ATN Attention 23 GND ATN ground
12 Shield |[Chassis ground 24 GND Signal ground
Data Lines

The eight data lines, DIO1 through DIOS, are used for transferring data one byte at
a time. DIO1 is the least significant bit, while DIO8 is the most significant bit. The
transferred data can be an instrument command or a GPIB interface command.

Data formats are vendor-specific and can be text-based (ASCII) or binary. GPIB interface
commands are defined by the IEEE 488 standard.

Interface Management Lines
The interface management lines control the flow of data across the GPIB interface.

GPIB Interface Management Lines

Line Description

ATN Used by the Controller to inform all devices on the GPIB that bytes

are being sent. If the ATN line is high, the bytes are interpreted as an
instrument command. If the ATN line is low, the bytes are interpreted as
an interface message.

IFC Used by the Controller to initialize the bus. If the IFC line is low, the
Talker and Listeners are unaddressed, and the System Controller becomes
the Controller-In-Charge.

4-5

4 Controlling Instruments Using GPIB

4-6

Line

Description

REN

Used by the Controller to place instruments in remote or local program
mode. If REN is low, all Listeners are placed in remote mode, and you
cannot change their settings from the front panel. If REN is high, all
Listeners are placed in local mode.

SRQ

Used by Talkers to asynchronously request service from the Controller. If
SRQ is low, then one or more Talkers require service (for example, an error
such as invalid command was received). You issue a serial poll to determine
which Talker requested service. The poll automatically sets the SRQ line
high.

EOI

If the ATN line is high, the EOI line is used by Talkers to identify the
end of a byte stream such as an instrument command. If the ATN line is
low, the EOI line is used by the Controller to perform a parallel poll (not
supported by the toolbox).

You can examine the state of the interface management lines with the
BusManagementStatus property.

Handshake Lines

The three handshake lines, DAV, NRFD, and NDAC, are used to transfer bytes over the
data lines from the Talker to one or more addressed Listeners.

Before data is transferred, all three lines must be in the proper state. The active Talker
controls the DAV line and the Listener(s) control the NRFD and NDAC lines. The
handshake process allows for error-free data transmission.

Handshake Lines
Line Description
DAV Used by the Talker to indicate that a byte can be read by the Listeners.

NRFD

Indicates whether the Listener is ready to receive the byte.

NDAC

Indicates whether the Listener has accepted the byte.

The handshaking process follows these steps:

1 Initially, the Talker holds the DAV line high indicating no data is available, while
the Listeners hold the NRFD line high and the NDAC line low indicating they are
ready for data and no data is accepted, respectively.

GPIB Overview

2 When the Talker puts data on the bus, it sets the DAV line low, which indicates that
the data is valid.

3 The Listeners set the NRFD line low, which indicates that they are not ready to
accept new data.

4 The Listeners set the NDAC line high, which indicates that the data is accepted.

5 When all Listeners indicate that they have accepted the data, the Talker sets the
DAV line high indicating that the data is no longer valid. The next byte of data can
now be transmitted.

6 The Listeners hold the NRFD line high indicating they are ready to receive data
again, and the NDAC line is held low indicating no data is accepted.

Note: If the ATN line is high during the handshaking process, the information is
considered data such as an instrument command. If the ATN line is low, the information
is considered a GPIB interface message.

The handshaking steps are shown below.

ATN —
Data = | Bytel Byte 2
DAV T
Data Datanot
| valid | valid
| |
|
: All None
read read
NRFD R Y
|
|
| None All
NDAC | accept accept
|
|
Initial
state

4-7

4 Controlling Instruments Using GPIB

4-8

You can examine the state of the handshake lines with the HandshakeStatus property.

Status and Event Reporting

GPIB provides a system for reporting status and event information. With this system,
you can find out if your instrument has data to return, whether a command error
occurred, and so on. For many instruments, the reporting system consists of four 8-bit
registers and two queues (output and event). The four registers are grouped into these
two functional categories:

* Status Registers — The Status Byte Register (SBR) and Standard Event Status
Register (SESR) contain information about the state of the instrument.

* Enable Registers — The Event Status Enable Register (ESER) and the Service
Request Enable Register (SRER) determine which types of events are reported to the
status registers and the event queue. ESER enables SESR, while SRER enables SBR.

The status registers, enable registers, and output queue are shown below.

GPIB Overview

Standard Event
kit 7 bit 0

‘PON‘URQ ‘CI\-EE‘E}CE! ‘ DDE‘ QYE ‘RQC‘ OPC‘ Standard Event Status Register

‘P ON‘URQ ‘ CI\-EE:‘E}CE: ‘ DDE‘ avE|RaC|oPC ‘ Stallldal'd Event Status Enable
Register

h F h F r

Logical OR

Output Queue

Data available on instrument
ready to be sent across the bus

it ¥ R:;%S hJ h J kit O
‘ — ESB‘I\'[AV - ‘ — ‘ — ‘ - ‘ Status Byte Register
MSS
> | ESB |MAV] Service Request Enable
‘_ ‘ _‘ _‘ _‘ ~ | Register
¥ ¥ ¥ h 4 k2 R 2 v
Logical OR

4-9

4 Controlling Instruments Using GPIB

Status Byte Register

Each bit in the Status Byte Register (SBR) is associated with a specific type of event.
When an event occurs, the instrument sets the appropriate bit to 1. You can enable
or disable the SBR bits with the Service Request Enable Register (SRER). You can
determine which events occurred by reading the enabled SBR bits.

Status Byte Register Bits

Bit Label Description

0-3 - Instrument-specific summary messages.

4 MAV The Message Available bit indicates if data is available in the

Output Queue. MAV is 1 if the Output Queue contains data. MAV is
0 if the Output Queue is empty.

5 ESB The Event Status bit indicates if one or more enabled events have
occurred. ESB is 1 if an enabled event occurs. ESB is 0 if no enabled
events occur. You enable events with the Standard Event Status
Enable Register.

6 MSS The Master Summary Status summarizes the ESB and MAV bits.
MSS is 1 if either MAV or ESB is 1. MSS is 0 if both MAV and ESB
are 0. This bit is obtained from the *STB? command.

RQS The Request Service bit indicates that the instrument requests
service from the GPIB controller. This bit is obtained from a serial
poll.

7 - Instrument-specific summary message.

For example, if you want to know when a specific type of instrument error occurs, you
would enable bit 5 of the SRER. Additionally, you would enable the appropriate bit of the
Standard Event Status Enable Register (see “Standard Event Status Register” on page
4-11) so that the error event of interest is reported by the ESB bit of the SBR.

4-10

GPIB Overview

Standard Event Status Register

Each bit in the Standard Event Status Register (SESR) is associated with a specific state
of the instrument. When the state changes, the instrument sets the appropriate bits to 1.
You can enable or disable the SESR bits with the Standard Event Status Enable Register
(ESER). You can determine the state of the instrument by reading the enabled SESR
bits. The SESR bits are described below.

SESR Bits

Bit Label Description

0 OPC The Operation Complete bit indicates that all commands have
completed.

RQC The Request Control bit is not used by most instruments.

2 QYE The Query Error bit indicates that the instrument attempted to
read an empty output buffer, or that data in the output buffer was
lost.

3 DDE The Device Dependent Error bit indicates that a device error
occurred (such as a self-test error).

4 EXE The Execution Error bit indicates that an error occurred when the
device was executing a command or query.

5 CME The Command Error bit indicates that a command syntax error
occurred.

URQ The User Request bit is not used by most instruments.
PON The Power On bit indicates that the device is powered on.

For example, if you want to know when an execution error occurs, you would enable
bit 4 of the ESER. Additionally, you would enable bit 5 of the SRER (see “Status Byte
Register” on page 4-10) so that the error event of interest is reported by the ESB bit of
the SBR.

4-11

4 Controlling Instruments Using GPIB

Reading and Writing Register Information

This section describes the common GPIB commands used to read and write status and
event register information.

Register Commands

Register Operation Command Description

SESR Read *ESR? Return a decimal value that corresponds to the
weighted sum of all the bits set in the SESR
register.

Write N/A You cannot write to the SESR register.

ESER Read *ESE? Return a decimal value that corresponds to the
weighted sum of all the bits enabled by the *ESE
command.

Write *ESE Write a decimal value that corresponds to the

weighted sum of all the bits you want to enable in
the SESR register.

SBR Read *STB? Return a decimal value that corresponds to the
weighted sum of all the bits set in the SBR register.
This command returns the same result as a serial
poll except that the MSS bit is not cleared.

Write N/A You cannot write to the SBR register.

SRER Read *SRE? Return a decimal value that corresponds to the
weighted sum of all the bits enabled by the *SRE
command.

Write *SRE Write a decimal value that corresponds to the

weighted sum of all the bits you want to enable in
the SBR register.

For example, to enable bit 4 of the SESR, you write the command *ESE 16. To enable
bit 4 and bit 5 of the SESR, you write the command *ESE 48. To enable bit 5 of the SBR,
you write the command *SRE 32.

To see how to use many of these commands in the context of an instrument control
session, refer to “Executing a Serial Poll” on page 4-39.

4-12

Creating a GPIB Object

Creating a GPIB Obiject

In this section...

“Using the gpib Function” on page 4-13
“GPIB Object Display” on page 4-14

Using the gpib Function

You create a GPIB object with the gpib function. gpib requires the adaptor name,
the GPIB board index, and the primary address of the instrument. As described in
“Connecting to the Instrument” on page 2-4, you can also configure property values
during object creation. For a list of supported adaptors, refer to “Interface Driver
Adaptor” on page 1-9.

Each GPIB object is associated with one controller and one instrument. For example, to
create a GPIB object associated with a National Instruments controller with board index
0, and an instrument with primary address 1,

g = gpib(*ni~,0,1);

Note: You do not use the GPIB board primary address in the GPIB object constructor
syntax. You use the board index and the instrument address.

The GPIB object g now exists in the IEEE workspace. You can display the class of g with
the whos command.

whos g
Name Size Bytes Class
g 1x1 636 gpib object

Grand total is 14 elements using 636 bytes

Once the GPIB object is created, the following properties are automatically assigned
values. These general-purpose properties describe the object based on its class type and
address information.

GPIB Descriptive Properties

4-13

4 Controlling Instruments Using GPIB

4-14

Property Name |Description

Name Specify a descriptive name for the GPIB object.

Type Indicate the object type.

You can display the values of these properties for g with the get function.
g-Name

ans =

GPIBO-1

g-Type

ans =

gpib

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

GPIB Obiject Display

The GPIB object provides you with a convenient display that summarizes important
address and state information. You can invoke the display summary as follows:

* Type the GPIB object at the command line.
* Exclude the semicolon when creating a GPIB object.

+ Exclude the semicolon when configuring properties using dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the GPIB object g is:

GPIB Object Using NI Adaptor : GPIBO-1

Creating a GPIB Object

Communication Address
BoardIndex:
PrimaryAddress:
SecondaryAddress:

Communication State
Status:
RecordStatus:

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

Related Examples

closed
off

dle

OO0OQOm

. “Configuring the GPIB Address” on page 4-16
. “Writing and Reading Data” on page 4-18

4-15

4 Controlling Instruments Using GPIB

Configuring the GPIB Address

4-16

Each GPIB object is associated with one controller and one instrument. The GPIB
address consists of the board index of the GPIB controller, and the primary address
and (optionally) the secondary address of the instrument. The term “board index” is

equivalent to the term “logical unit” as used by Agilent Technologies®.

Note that some vendors place limits on the allowed board index values. Refer to
Appendix A for a list of these limitations. You can usually find the instrument addresses
through a front panel display or by examining dip switch settings. Valid primary
addresses range from 0 to 30. Valid secondary addresses range from 96 to 126, or can be
0, indicating that no secondary address is used.

The properties associated with the GPIB address are given below.

GPIB Address Properties

Property Name Description

BoardIndex Specify the index number of the GPIB board.
PrimaryAddress Specify the primary address of the GPIB instrument.
SecondaryAddress |Specify the secondary address of the GPIB instrument.

You must specify the board index and instrument primary address values during GPIB
object creation. The BoardIndex and PrimaryAddress properties are automatically
updated with these values. If the instrument has a secondary address, you can specify its
value during or after object creation by configuring the SecondaryAddress property.

You can display the address property values for the GPIB object g created in “Creating a
GPIB Object” on page 4-13 .

g-BoardIndex
ans =
0

g-PrimaryAddress

ans =

Configuring the GPIB Address

g-SecondaryAddress
ans =

0

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Related Examples
. “Creating a GPIB Object” on page 4-13
. “Writing and Reading Data” on page 4-18

4-17

4 Controlling Instruments Using GPIB

Writing and Reading Data

4-18

In this section...

“Rules for Completing Write and Read Operations” on page 4-18
“Writing and Reading Text Data” on page 4-19

“Reading and Writing Binary Data” on page 4-22

“Parsing Input Data Using scanstr” on page 4-25
“Understanding EOI and EOS” on page 4-26

Rules for Completing Write and Read Operations

Completing Write Operations

A write operation using Fprintf or fwrite completes when one of these conditions is
satisfied:

* The specified data is written.

+ The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation at any time with the
stopasync function.

An instrument determines if a write operation is complete based on the EOSMode,
EOIMode, and EOSCharCode property values. If EOSMode is configured to either write
or read&write, each occurrence of \n in a text command is replaced with the End-Of-
String (EOS) character specified by the EOSCharCode value. Therefore, when you use
the default Fprintf format of %s\n, all text commands written to the instrument will
end with that value. The default EOSCharCode value is LF, which corresponds to the line
feed character. The EOS character required by your instrument will be described in its
documentation.

If EOIMode is on, then the End Or Identify (EOI) line is asserted when the last byte is
written to the instrument. The last byte can be part of a binary data stream or a text
data stream. If EOSMode is configured to either write or read&write, then the last byte
written is the EOSCharCode value and the EOI line is asserted when the instrument
receives this byte.

Writing and Reading Data

Completing Read Operations

A read operation with

fgetl, fgets, fread, fscanf, or readasync completes when one

of these conditions is satisfied:

The EOI line is ass

when the EOSMode

The input buffer is

erted.

The terminator specified by the EOSCharCode property is read. This can occur only

property is configured to either read or read&write.

The time specified by the Timeout property passes.
The specified number of values is read (fread, fscanf, and readasync only).

filled (if the number of values is not specified).

In addition to these rules, you can stop an asynchronous read operation at any time with
the stopasync function.

Writing and Readi

ng Text Data

These functions are used when reading and writing text:

Function Purpose
fprintf Write text to an instrument.
fscanf Read data from an instrument and format as text.

These properties are a

ssociated with reading and writing text:

Property Purpose

ValuesReceived Specifies the total number of values read from the instrument.

ValuesSent Specifies the total number of values sent to the instrument.

InputBufferSize |Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

EOSMode Configures the End-Of-String termination mode.

EOSCharCode Specifies the End-Of-String terminator.

EOIMode Enables or disables the assertion of the EOI mode at the end of a

write operation.

4-19

4 Controlling Instruments Using GPIB

4-20

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

The following example illustrates how to communicate with a GPIB instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope. Therefore, many of the
commands used are specific to this instrument. A sine wave is input into channel 2 of the
oscilloscope, and your job is to measure the peak-to-peak voltage of the input signal:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni*,0,1);
2 Connect to the instrument — Connect g to the oscilloscope, and return the default
values for the EOSMode and EOIMode properties.

fopen(qg)
get(g,{"EOSMode*, "EOIMode*})
ans =

"none” “on*®

Using these property values, write operations complete when the last byte is written
to the instrument, and read operations complete when the EOI line is asserted by
the instrument.

3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(g, "*IDN?")

idn = fscanf(g)

idn =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Determine the measurement source. Possible measurement sources include channel
1 and channel 2 of the oscilloscope.

fprintf(g, "MEASUREMENT : IMMED : SOURCE? ")
source = fscanf(g)
source

Writing and Reading Data

CH1

The scope is configured to return a measurement from channel 1. Because the input
signal is connected to channel 2, you must configure the instrument to return a
measurement from this channel.

fprintf(g, "MEASUREMENT : IMMED :SOURCE CH2")
fprintf(g, "MEASUREMENT : IMMED : SOURCE?")
source = fscanf(g)

source =

CH2

You can now configure the scope to return the peak-to-peak voltage, request the
value of this measurement, and then return the voltage value to the IEEE software
using Fscanft.

fprintf(g, "MEASUREMENT :MEAS1:TYPE PK2PK®)
fprintf(g, "MEASUREMENT :MEAS1:VALUE?")
ptop = fscanf(g)
ptop =
2.0199999809E0
4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the IEEE workspace.

fclose(Q)
delete(Q)
clear g

ASCII Write Properties

By default, the End or Identify (EOI) line is asserted when the last byte is written to the
instrument. This behavior is controlled by the EOIMode property. When EOIMode is set
to on, the EOI line is asserted when the last byte is written to the instrument. When
EOIMode is set to off, the EOI line is not asserted when the last byte is written to the
instrument.

The EOI line can also be asserted when a terminator is written to the instrument. The
terminator is defined by the EOSCharCode property. When EOSMode is configured to
write or read&write, the EOI line is asserted when the EOSCharCode property value
1s written to the instrument.

All occurrences of \n in the command written to the instrument are replaced with the
EOSCharCode property value if EOSMode is set to write or read&write.

4-21

4 Controlling Instruments Using GPIB

4-22

Reading and Writing Binary Data

These functions are used when reading and writing binary data:

Function Purpose
fread Read binary data from an instrument.
fwrite Write binary data to an instrument.

These properties are associated with reading and writing binary data:

Property Purpose

ValuesReceived Specifies the total number of values read from the instrument.

ValuesSent Specifies the total number of values sent to the instrument.

InputBufferSize |Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

EOSMode Configures the End-Of-String termination mode.

EOSCharCode Specifies the End-Of-String terminator.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

You use the fwrite function to write binary data to an instrument.

By default, the fwrite function operates in a synchronous mode. This means that
fwrite blocks the MATLAB command line until one of the following occurs:

+ All the data is written

+ A timeout occurs as specified by the Timeout property

By default the fwrite function writes binary data using the uchar precision. However,

other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Writing and Reading Data

You use the fread function to read binary data from the instrument.
The fread function blocks the MATLAB command line until one of the following occurs:

* A timeout occurs as specified by the Timeout property

* The input buffer is filled

* The specified number of values is read

* The EOI line is asserted

* The terminator is received as specified by the EOSCharCode property (if defined)

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note: When performing a read or write operation, you should think of the received data
in terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

The following example illustrates how you can download the TDS 210 oscilloscope
screen display to the IEEE software. The screen display data is transferred to the IEEE
software and saved to disk using the Windows bitmap format. This data provides a
permanent record of your work, and is an easy way to document important signal and
scope parameters:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni~,0,1);

2 Configure property values — Configure the input buffer to accept a reasonably
large number of bytes, and configure the timeout value to two minutes to account for
slow data transfer.

g- InputBufferSize = 50000;
g-Timeout = 120;
3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
4 Write and read data — Configure the scope to transfer the screen display as a

bitmap.

4-23

4 Controlling Instruments Using GPIB

4-24

fprintf(g, "HARDCOPY :PORT GPIB™)
fprintf(g, "HARDCOPY : FORMAT BMP™)
fprintf(g, "HARDCOPY START®)

Asynchronously transfer the data from the instrument to the input buffer.

readasync(Qg)

Wait until the read operation completes, and then transfer the data to the IEEE
workspace as unsigned 8-bit integers.

g-TransferStatus

ans =

idle

out = fread(g,g-BytesAvailable, "uint8");

Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the IEEE workspace.

fclose(Q)
delete(Q)
clear g

Viewing the Bitmap Data

To view the bitmap data, you should follow these steps:

OB WN—

Open a disk file.

Write the data to the disk file.

Close the disk file.

Read the data using the imread function.

Scale and display the data using the imagesc function.

Note that the MATLAB software file I/O versions of the Fopen, fwrite, and fclose
functions are used.

fid = fopen(“testl.bmp”®, *w");
fwrite(fid,out, "uint8");
fclose(fid)

a = imread("testl.bmp®,"bmp®);

Display the image.

imagesc(a)

Writing and Reading Data

Use a gray colormap since the instrument only generates grayscale images.

c = colormap(gray);
colormap(flipud(c));

The resulting bitmap image is shown below.

F =\

4 Figure 1 O | B |
File Edit View Insert Tools Desktop Window Help &

ﬂjlﬂé D@ f\-T\-@@@ﬁ‘@;DE E'E

Tel: T H Trio'd M Pas: 00005 7 MEASURE
-

CH1
Pe-Pk
ol 204

CH1

Pk-PEk

[\ /\ 204y
100 - 5 CHT -
= Freq

1.000kHz

CH1
150 Period

1.000mns
CH1
200 E%Eafnhﬂjs
CH1 S00mY M 500 s CH1 7 1300
. . . © 1D0000KH:
50 100 150 200 250 300

Parsing Input Data Using scanstr

This example illustrates how to use the scanstr function to parse data that you read
from a Tektronix TDS 210 oscilloscope. scanstr is particularly useful when you want to

4-25

4 Controlling Instruments Using GPIB

parse a string into one or more cell array elements, where each element is determined to
be either a double or a character vector:

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni*,0,1);
2 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
3 Write and read data — Return identification information to separate elements of a

cell array using the default delimiters.

fprintf(g, "*IDN?");
idn = scanstr(g)
idn =
"TEKTRONIX*
"TDS 210-
L 0]
"CF:91.1CT FV:v1l.16 TDS2CM:CMV:v1.04"
4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(Q)
delete(Q)
clear g

Understanding EOl and EOS

This example illustrates how the EOI line and the EOS character are used to complete
read and write operations, and how the EOIMode, EOSMode, and EOSCharCode
properties are related to each other. In most cases, you can successfully communicate
with your instrument by accepting the default values for these properties.

The default value for EOIMode is on, which means that the EOI line is asserted when
the last byte is written to the instrument. The default value for EOSMode is none,
which means that the EOSCharCode value is not written to the instrument, and read
operations will not complete when the EOSCharCode value is read. Therefore, when you
use the default values for EOIMode and EOSMode,

* Write operations complete when the last byte is written to the instrument.

4-26

Writing and Reading Data

Read operations complete when the EOI line is asserted by the instrument.

Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni*,0,1);
Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

Write and read data — Configure g so that the EOI line is not asserted after the
last byte is written to the instrument, and the EOS character is used to complete
write operations. The default format for fprintf is %s\n, where \n is replaced by
the EOS character as given by EOSCharCode.

g-EOIMode "off";
g-EOSMode "write”;
fprintf(g, "*IDN?")
out = fscanf(g)

out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Although EOSMode is configured so that read operations will not complete after
receiving the EOS character, the preceding read operation succeeded because the
EOI line was asserted.

Now configure g so that the EOS character is not used to complete read or write
operations. Because the EOI line is not asserted and the EOS character is not
written, the instrument cannot interpret the *IDN? command and a timeout occurs.

g-EOSMode = "none”;
fprintf(g, "*IDN?")
out = fscanf(g)

Warning: GPIB: NI: An 1/0 operation has been canceled mostly
likely due to a timeout.

Now configure g so that the read operation terminates after the “X” character is
read. The EOIMode property is configured to on so that the EOI line is asserted after
the last byte is written. The EOSMode property is configured to read so that the read
operation completes when the EOSCharCode value is read.

4-27

4 Controlling Instruments Using GPIB

g-EOIMode = "on";
g-EOSMode = "read”;
g-EOSCharCode = "X*;
fprintf(g, "*IDN?")
out = fscanf(g)

out =

TEKTRONIX

Note that the rest of the identification string remains in the instrument's hardware
buffer. If you do not want to return this data during the next read operation, you
should clear it from the instrument buffer with the clrdevice function.

clrdevice(Q)
4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(Q)

delete(Q)
clear g

4-28

Events and Callbacks

Events and Callbacks

In this section...

“Introduction to Events and Callbacks” on page 4-29

“Event Types and Callback Properties” on page 4-30
“Responding To Event Information” on page 4-31

“Creating and Executing Callback Functions” on page 4-32
“Enabling Callback Functions After They Error” on page 4-33
“Using Events and Callbacks to Read Binary Data” on page 4-34

Introduction to Events and Callbacks

You can enhance the power and flexibility of your instrument control application by
using events. An event occurs after a condition is met, and might result in one or more
callbacks.

While the instrument object is connected to the instrument, you can use events to display
a message, display data, analyze data, and so on. Callbacks are controlled through
callback properties and callback functions. All event types have an associated callback
property. Callback functions are MATLAB functions that you construct to suit your
specific application needs.

You execute a callback when a particular event occurs by specifying the name of the
callback function as the value for the associated callback property.

This example uses the callback function instrcal Iback to display a message to the
command line when a bytes-available event occurs. The event is generated when the
EOSCharCode property value is read.

g = gpib(*ni*,0,1);
g-BytesAvailableFcnMode = "eosCharCode”;
g-BytesAvailableFcn = @instrcallback;

fopen(g)
fprintf(g, "*IDN?")
readasync(Qg)

The resulting display from instrcal lback is shown below.

4-29

4 Controlling Instruments Using GPIB

4-30

BytesAvailable event occurred at 17:30:11 for the object: GPIBO-1.

End the GPIB session.

fclose(Q)

delete(Q)

clear g

You can see the code for the built-in instrcal Iback function by using the type
command.

Event Types and Callback Properties

The GPIB event types and associated callback properties are described below.

GPIB Event Types and Callback Properties

Event Type Associated Property Name

Bytes-available BytesAvailableFcn

BytesAvai lableFcnCount

BytesAvai lableFcnMode

Error ErrorFcn

Output-empty OutputEmptyFcn

Timer TimerFcn
TimerPeriod

Bytes-Available Event

A bytes-available event is generated immediately after a predetermined number of bytes
are available in the input buffer or the End-Of-String character is read, as determined by
the BytesAvai lableFcnMode property.

If BytesAvai lableFcnMode is byte, the bytes-available event executes the callback
function specified for the BytesAvai lableFcn property every time the number

of bytes specified by BytesAvai lableFcnCount is stored in the input buffer. If
BytesAvai lableFcnMode is eosCharCode, then the callback function executes every
time the character specified by the EOSCharCode property is read.

This event can be generated only during an asynchronous read operation.

Events and Callbacks

Error Event

An error event is generated immediately after an error, such as a timeout, occurs. A
timeout occurs if a read or write operation does not successfully complete within the time
specified by the Timeout property. An error event is not generated for configuration
errors such as setting an invalid property value.

This event executes the callback function specified for the ErrorFcn property. It can be
generated only during an asynchronous read or write operation.

Output-Empty Event
An output-empty event is generated immediately after the output buffer is empty.

This event executes the callback function specified for the OutputEmptyFcn property. It
can be generated only during an asynchronous write operation.

Timer Event

A timer event is generated when the time specified by the TimerPeriod property passes.
Time is measured relative to when the object is connected to the instrument.

This event executes the callback function specified for the TimerFcn property. Note that
some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value is too small.

Responding To Event Information

You can respond to event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The Type field
contains the event type, while the Data field contains event-specific information. As
described in “Creating and Executing Callback Functions” on page 4-32, these two

fields are associated with a structure that you define in the callback function header.
Refer to “Debugging: Recording Information to Disk” on page 17-6 to learn about

storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

GPIB Event Information

Event Type Field Field Value
Bytes available Type BytesAvailable

4-31

4 Controlling Instruments Using GPIB

Event Type Field Field Value
Data.AbsTime day-month-year hour:minute:second
Error Type Error
Data.AbsTime day-month-year hour:minute:second
Data.Message An error string
Output empty Type OutputEmpty
Data.AbsTime day-month-year hour:minute:second
Timer Type Timer
Data.AbsTime day-month-year hour:minute:second

The Data field values are described below.
AbsTime Field

AbsTime is defined for all events, and indicates the absolute time the event occurred.
The absolute time is returned using the MATLAB clock format:

day-month-year hour:minute:second
Message Field

Message is used by the error event to store the descriptive message that is generated
when an error occurs.

Creating and Executing Callback Functions

You specify the callback function to be executed when a specific event type occurs by
including the name of the file as the value for the associated callback property. You

can specify the callback function as a function handle or as a string cell array element.
Note that if you are executing a local callback function from within a file, then you must
specify the callback as a function handle.

For example, to execute the callback function mycal Iback every time the EOSCharCode
property value is read from your instrument,

g-BytesAvailableFcnMode = "eosCharCode”;
g-BytesAvailableFcn = @mycallback;

4-32

Events and Callbacks

Alternatively, you can specify the callback function as a cell array.

g-BytesAvailableFcn = {"mycallback"};

Callback functions require at least two input arguments. The first argument is

the instrument object. The second argument is a variable that captures the event
information given in the preceding table, GPIB Event Information. This event
information pertains only to the event that caused the callback function to execute. The
function header for mycal Iback is shown below.

function mycal lback(obj ,event)

You pass additional parameters to the callback function by including both the callback
function and the parameters as elements of a cell array. For example, to pass the
MATLAB variable time to mycal Iback,

time = datestr(now,0);
g-BytesAvailableFcnMode = "eosCharCode”;
g-BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify mycal Iback as a character vector in the cell array.
g-BytesAvailableFcn = {"mycallback"®,time};
The corresponding function header is

function mycal lback(obj,event,time)

If you pass additional parameters to the callback function, then they must be included in
the function header after the two required arguments.

Note: You can also specify the callback function as a character vector. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are made on the
input arguments of the callback function.

Enabling Callback Functions After They Error

If an error occurs while a callback function is executing, then

* The callback function is automatically disabled.

4-33

4 Controlling Instruments Using GPIB

4-34

A warning is displayed at the command line, indicating that the callback function is
disabled.

If you want to enable the same callback function, you can set the callback property to the
same value or you can disconnect the object with the fclose function. If you want to use
a different callback function, the callback will be enabled when you configure the callback
property to the new value.

Using Events and Callbacks to Read Binary Data

This example extends “Reading and Writing Binary Data” on page 4-22 by using the
callback function instrcal lback to display event-related information to the command
line when a bytes-available event occurs during a binary read operation:

1

Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni~,0,1);

Configure properties — Configure the input buffer to accept a reasonably large
number of bytes, and configure the timeout value to two minutes to account for slow
data transfer.

g- InputBufferSize = 50000;
g-Timeout = 120;

Configure g to execute the callback function instrcal Iback every time 5000 bytes
is stored in the input buffer. Because instrcal lback requires an instrument object
and event information to be passed as input arguments, the callback function is
specified as a function handle.

g-BytesAvailableFcnMode = "byte”®;
g-BytesAvailableFcnCount = 5000;

g-BytesAvailableFcn = @instrcallback;

Connect to the instrument — Connect g to the oscilloscope.

fopen(9)
Write and read data — Configure the scope to transfer the screen display as a

bitmap.

fprintf(g, "HARDCOPY :PORT GPIB™)
fprintf(g, "HARDCOPY : FORMAT BMP™)

Events and Callbacks

fprintf(g, "HARDCOPY START")

Initiate the asynchronous read operation, and begin generating events.
readasync(Qg)

instrcal lback is called every time 5000 bytes is stored in the input buffer. The
resulting displays are shown below.

BytesAvailable event occurred at 09:41:42 for the object: GPIBO-1.
BytesAvailable event occurred at 09:41:50 for the object: GPIBO-1.
BytesAvailable event occurred at 09:41:58 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:06 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:14 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:22 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:30 for the object: GPIBO-1.

Wait until all the data is sent to the input buffer, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

g-TransferStatus

ans =

idle

out = fread(g,g-BytesAvailable, "uint8");

Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(Q)
delete(Q)
clear g

4-35

4 Controlling Instruments Using GPIB

Triggers

4-36

In this section...

“Using the trigger Function” on page 4-36

“Executing a Trigger” on page 4-36

Using the trigger Function

You can execute a trigger with the trigger function. This function is equivalent to
writing the GET (Group Execute Trigger) GPIB command to the instrument.

trigger instructs all the addressed Listeners to perform some instrument-specific
function such as taking a measurement. Refer to your instrument documentation to learn
how to use its triggering capabilities.

Executing a Trigger

This example illustrates GPIB triggering using an Agilent 33120A function generator.
The output of the function generator is displayed with an oscilloscope so that you can
observe the trigger.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni~,0,1);
2 Connect to the instrument — Connect g to the function generator.

fopen(g)
3 Write and read data — Configure the function generator to produce a 5000 Hz sine

wave, with 6 volts peak-to-peak.
fprintf(g, "Func:Shape Sin®)

fprintf(g, "Volt 37)
fprintf(g, "Freq 5000%)

Configure the burst of the trigger to display the sine wave for five seconds, configure
the function generator to expect the trigger from the GPIB board, and enable the
burst mode.

fprintf(g, "BM:NCycles 25000")

Triggers

fprintf(g, "Trigger:Source Bus™)
fprintf(g, "BM:State On")

Trigger the instrument.
trigger(g)
Disable the burst mode.

fprintf(g, "BM:State OFf")

While the function generator is triggered, the sine wave is saved to the Ref A
memory location of the oscilloscope. The saved waveform is shown below.

4-37

4 Controlling Instruments Using GPIB

-

[Figure 1

Desktop Window Help &

0| =@

Inzert Tools

Rs’ .f\-._'\-@@'@_ ﬁ{' ﬁ..—u

File Edit View

D5 de

MEAZLRE
CH1
Pe-Pk
B2, 4Y
CH1
Pk-Pk
B 4y
CH1

Freq
5.010kHz

CH1
Perind
133.6,us

CH1
Cyo Rkl
21T

CHY 7 =130

Tels in H Trio'd b Pds; 0.000s
-+

50

100

1+ ' +

150

200 -

CH1 1004

i 100 s

5.00003kHz

50

100 150

200

260 300

b

4 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(Q)
delete(Q)
clear g

4-38

Serial Polls

Serial Polls

In this section...

“Using the spoll Function” on page 4-39

“Executing a Serial Poll” on page 4-39

Using the spoll Function

You can execute a serial poll with the spoll function. In a serial poll, the Controller asks
(polls) each addressed Listener to send back a status byte that indicates whether it has
asserted the SRQ line and needs servicing. The seventh bit of this byte (the RQS bit) is
set if the instrument is requesting service.

The Controller performs the following steps for every addressed Listener:

1 The Listener is addressed to talk and the Serial Poll Enable (SPE) command byte is
sent.

2 The ATN line is set high and the Listener returns the status byte.

3 The ATN line is set low and the Serial Poll Disable (SPD) command byte is sent to
end the poll sequence.

Refer to “Status and Event Reporting” on page 4-8 for more information on the GPIB bus
lines and the RQS bit.

Executing a Serial Poll

This example shows you how to execute a serial poll for an Agilent 33120A function
generator and a Tektronix TDS 210 oscilloscope. In doing so, the example shows you how
to configure many of the status bits described in “Standard Event Status Register” on

page 4-11:

1 Create instrument objects — Create a GPIB object associated with an Agilent
33120A function generator at primary address 1.

gl = gpib("ni*,0,1);

Create a GPIB object associated with a Tektronix TDS 210 oscilloscope at primary
address 2.

g2 = gpib("ni",0,2);

4-39

4 Controlling Instruments Using GPIB

2 Connect to the instrument — Connect gl to the function generator and connect
g2 to the oscilloscope.

fopen([gl 92])
3 Configure property values — Configure both objects to time out after 1 second.

gl.Timeout 1;
g2.Timeout 1;

4 Write and read data — Configure the function generator to request service when a
command error occurs.

fprintf(gl, "*CLS");
fprintf(gl, "*ESE 327);
fprintf(gl, "*SRE 32%);

Configure the oscilloscope to request service when a command error occurs.
fprintf(g2, "*CLS")

fprintf(g2, "*PSC 07)

fprintf(g2, "*ESE 327)

fprintf(g2, "DESE 327)
fprintf(g2, "*SRE 327)

Determine if any instrument needs servicing.

spoll([gl 921
ans =

[1

Query the voltage value for each instrument.

fprintf(gl, "Volt?")
fprintf(g2, "Volt?")

Determine if either instrument produced an error due to the preceding query.

out = spoll([gl g2]);

Because Volt? is an invalid command for the oscilloscope, it is requesting service.
out == [gl g2]

ans =
01

4-40

Serial Polls

Because Vol t? is a valid command for the function generator, the value is read back
successfully.

voltl = fscanf(gl)
voltl =
+1.00000E-01

However, the oscilloscope read operation times out after 1 second.

volt2 = fscanf(g2)
Warning: GPIB: NI: An 1/0 operation has been canceled, most likely
due to a timeout.

volt2 =

Disconnect and clean up — When you no longer need g1 and g2, you should

disconnect them from the instruments, and remove them from memory and from the
MATLAB workspace.

fclose([gl g2])

delete([gl g2])
clear gl g2

4-41

Controlling Instruments Using VISA

This chapter describes specific issues related to controlling instruments that use the

VISA standard.

“VISA Overview” on page 5-2

“Working with the GPIB Interface” on page 5-5

“Working with VXI and PXI Interfaces” on page 5-9

“Working with the GPIB-VXI Interface” on page 5-21

“Working with the Serial Port Interface” on page 5-26

“Working with the USB Interface” on page 5-30

“Working with the TCP/IP Interface for VXI-11 and HiSLIP” on page 5-34
“Working with the RSIB Interface” on page 5-38

“Working with the Generic Interface” on page 5-42

“Reading and Writing ASCII Data Using VISA” on page 5-45
“Reading and Writing Binary Data Using VISA” on page 5-51
“Asynchronous Read and Write Operations Using VISA” on page 5-58

5 Controlling Instruments Using VISA

VISA Overview

5-2

In this section...
“What Is VISA?” on page 5-2
“Interfaces Used with VISA” on page 5-2

“Supported Vendor and Resource Names” on page 5-3

What Is VISA?

Virtual Instrument Standard Architecture (VISA) is a standard defined by Agilent
Technologies and National Instruments for communicating with instruments regardless
of the interface.

The Instrument Control Toolbox software supports the GPIB, VXI, GPIB-VXI, TCP/IP
using VXI-11, TCP/IP using HiSLIP, USB, RSIB, and serial port interfaces using the
VISA standard. Communication is established through a VISA instrument object, which
you create in the MATLAB workspace. For example, a VISA-GPIB object allows you

to use the VISA standard to communicate with an instrument that possesses a GPIB
interface.

Note Most features associated with VISA instrument objects are identical to the features
associated with GPIB and serial port objects. Therefore, this chapter presents only
interface-specific functions and properties. For example, register-based communication
is discussed for VISA-VXI objects, but message-based communication is not discussed as
this topic is covered elsewhere in this guide.

Interfaces Used with VISA

For many VISA applications, you can communicate with your instrument without
detailed knowledge of how the interface works. In this case, you might want to begin with
one of these topics:

* “Working with the GPIB Interface” on page 5-5

+ “Working with VXI and PXI Interfaces” on page 5-9

+ “Working with the GPIB-VXI Interface” on page 5-21

+ “Working with the Serial Port Interface” on page 5-26

VISA Overview

+ “Working with the USB Interface” on page 5-30

+ “Working with the TCP/IP Interface for VXI-11 and HiSLIP” on page 5-34

* “Working with the RSIB Interface” on page 5-38

If you want a high-level description of all the steps you are likely to take when

communicating with your instrument, refer to the Getting Started documentation, linked
to at the top of the Instrument Control Toolbox Doc Center page.

Supported Vendor and Resource Names

When you use instrhwinfo to find commands to configure the interface objects, you must
use valid vendor or resource names. The supported values for vendor are given below.

Vendor Description

agilent Agilent Technologies VISA

ni National Instruments VISA

tek Tektronix VISA (see note below for 64-bit support)

Note: For 64-bit Tektronix VISA support, it is important to note the following if you have
a multi-vendor VISA installation (e.g., you have installed drivers from Tektronix and
another vendor such as Agilent). If you are using 64-bit Tektronix VISA on a machine
with VISA implementations from multiple vendors, it is required that Tektronix VISA
be configured as the primary VISA for it to be usable with Instrument Control Toolbox.
Most 64-bit VISA implementations include a utility that allows you to select the primary
and preferred VISA implementations. Use the VISA utility to set Tektronix VISA to be
the primary VISA implementation on your machine. This step can be accomplished at
any time, regardless of the order of installation of the VISA drivers.

The format for rsrc name is given below for the supported VISA interfaces. The values
indicated by brackets are optional. You can use the instrument's VISA Al ias for
rsrcname.

Interface Resource Name
GPIB GPIB[board]::primary_address[::secondary_address]:: INSTR
GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR

5-3

5 Controlling Instruments Using VISA

Interface Resource Name
RSIB RSIB::remote_host:: INSTR (provided by NI VISA only)
Serial ASRL[port_number]::INSTR

TCPIP (VXI-11) TCPIP[board]::remote_host[::inst0]::INSTR

TCPIP (HiSLIP) TCPIP[board]::remote_host[::hislip0]::INSTR

USB USB[board]::manid::model_code::serial_No[::interface_No]::INSTR

VXI VXI[chassis]::VXI_logical_address:: INSTR

The rsrcname parameters are described below.

Parameter Description

board Board index (optional — defaults to 0)

chassis VXI chassis index (optional — defaults to 0)

interface No USB interface

lan_device name Local Area Network (LAN) device name (optional —
defaults to inst0)

manid Manufacturer ID of the USB instrument

model _code Model code for the USB instrument

port_number Serial port number (optional — defaults to 1)

primary_address Primary address of the GPIB instrument

remote_host Host name or IP address of the instrument

secondary_address Secondary address of the GPIB instrument (optional —
defaults to 0)

serial_No Index of the instrument on the USB hub

VXI1_logical _address Logical address of the VXI instrument

obj = visa(“vendor®,“rsrcname”, "PropertyName" ,PropertyValue,...)
creates the VISA object with the specified property names and property values. If an
invalid property name or property value is specified, an error is returned and the VISA
object is not created.

5-4

Working with the GPIB Interface

Working with the GPIB Interface

In this section...

“Understanding VISA-GPIB” on page 5-5
“Creating a VISA-GPIB Object” on page 5-5
“VISA-GPIB Address” on page 5-7

Understanding VISA-GPIB

The GPIB interface is supported through a VISA-GPIB object. The features associated
with a VISA-GPIB object are similar to the features associated with a GPIB object.
Therefore, only functions and properties that are unique to VISA's GPIB interface are
discussed in this section.

Refer to “GPIB Overview” on page 4-2 to learn about the GPIB interface, writing and
reading text and binary data, using events and callbacks, using triggers, and so on.

Note The VISA-GPIB object does not support the spol I function, or the
BusManagementStatus, CompareBits, and HandshakeStatus properties.

Creating a VISA-GPIB Obiject

You create a VISA-GPIB object with the visa function. Each VISA-GPIB object is
associated with

* A GPIB controller installed in your computer

* An instrument with a GPIB interface

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the GPIB board index,
the instrument primary address, and the instrument secondary address. You can find the
VISA-GPIB resource name for a given instrument with the configuration tool provided
by your vendor, or with the instrhwinfo function. (In place of the resource name, you
can use an alias as defined with your VISA vendor configuration tool.) As described in
“Connecting to the Instrument” on page 2-4, you can also configure properties during
object creation.

5-5

5 Controlling Instruments Using VISA

5-6

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note its VISA resource string
and create the object using that information.

For example, to create a VISA-GPIB object associated with a National Instruments
controller with board index 0, and a Tektronix TDS 210 digital oscilloscope with primary
address 1 and secondary address 0,

vg = visa("ni","GPIB0O::1::0::INSTR");

The VISA-GPIB object vg now exists in the MATLAB workspace.
To open a connection to the instrument type:

fopen (vg);

You can then display the class of vg with the whos command.

whos vg
Name Size Bytes Class
vg 1x1 884 visa object

Grand total is 16 elements using 884 bytes

After you create the VISA-GPIB object, the following properties are automatically
assigned values. These properties provideinformation about the object based on its class
type and address information.

VISA-GPIB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-GPIB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vg.

vg.Name
ans =

"VISA-GPIBO-1"

vg.-RsrcName

Working with the GPIB Interface

ans =
"GPIBO::1::0::INSTR"

vg.-Type
ans =

"visa-gpib”
VISA-GPIB Obiject Display

The VISA-GPIB object provides a convenient display that summarizes important address
and state information. You can invoke the display summary as follows:

* Type the VISA-GPIB object at the command line.
* Exclude the semicolon when creating a VISA-GPIB object.

+ Exclude the semicolon when configuring properties using dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-GPIB object vg is given below.

VISA-GPIB Object Using NI Adaptor : VISA-GPIBO-1

Communication Address

BoardIndex: 0]
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

dle

OOQOm

VISA-GPIB Address

The VISA-GPIB address consists of

5-7

5 Controlling Instruments Using VISA

* The board index of the GPIB controller installed in your computer.

* The primary address and secondary address of the instrument. Valid primary
addresses range from 0 to 30. Valid secondary addresses range from 0 to 30, where
the value 0 indicates that the secondary address is not used.

You must specify the primary address value via the resource name during VISA-GPIB
object creation. Additionally, you must include the board index and secondary address
values as part of the resource name if they differ from the default value of 0.

The properties associated with the GPIB address are given below.

VISA-GPIB Address Properties

Property Name Description

BoardIndex Specify the index number of the GPIB board.
PrimaryAddress Specify the primary address of the GPIB instrument.
SecondaryAddress |Specify the secondary address of the GPIB instrument.

The BoardIndex, PrimaryAddress, and SecondaryAddress properties are
automatically updated with the specified resource name values when you create the
VISA-GPIB object.

You can display the address property values for the VISA-GPIB object vg created in
“Creating a VISA-GPIB Object” on page 5-5 .

vg.-BoardIndex
ans =

0

vg.PrimaryAddress
ans =
1

vg.-SecondaryAddress
ans =

0

5-8

Working with VXI and PXI Interfaces

Working with VXI and PXI Interfaces

In this section...

“Understanding VISA-VXI ” on page 5-9
“Understanding VISA-PXI” on page 5-10
“Creating a VISA-VXI Object” on page 5-10
“VISA-VXI Address” on page 5-12

“Register-Based Communication” on page 5-

13

Understanding VISA-VXI

The VXI interface is associated with a VXI controller that you install in slot 0 of a VXI
chassis. This interface, along with the other relevant hardware, is shown below.

Computer VXI
chassis

IEEE

—
1854 link
-

controller instrument

0 onf0ff
— @ a
v oom
I
5|
=1 Tl
=]
(=]
A
|
Hloto Sat1l Stz St :
WVXI WVXI

The VXI interface is supported through a VISA-VXI object. Many of the features
associated with a VISA-VXI object are similar to the features associated with other
instrument objects. Therefore, only functions and properties that are unique to VISA's

VXI interface are discussed in this section.

Refer to “GPIB Overview” on page 4-2 to learn about general toolbox capabilities such as
writing and reading text and binary data, using events and callbacks, and so on.

5-9

5 Controlling Instruments Using VISA

5-10

Understanding VISA-PXI

A PXT interface is supported through a VISA-PXI object. Features associated with
a VISA-PXI object are identical to the features associated with a VISA-VXI object.
Information provided for working with VISA-VXI in this section also works for VISA-PXI.

PXI devices may be supported by other toolboxes or come with higher level drivers that
are easier to interact with than the raw PXI interface.

Creating a VISA-VXI Obiject

You create a VISA-VXI object with the visa function. Each object is associated with

+ A VXI chassis
+ A VXI controller in slot 0 of the VXI chassis

* An instrument installed in the VXI chassis

visa requires the vendor name and the resource name as input arguments. The
vendor name is either agilent or ni. The resource name consists of the VXI chassis
index and the instrument logical address. You can find the VISA-VXI resource name
for a given instrument with the configuration tool provided by your vendor, or with
the instrhwinfo function. (In place of the resource name, you can use an alias as
defined with your VISA vendor configuration tool.) As described in “Connecting to the
Instrument” on page 2-4, you can also configure property values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-VXI object
associated with a VXI chassis with index 0 and an Agilent E1432A 16-channel digitizer
with logical address 32,

vv = visa("agilent®,"VX10::32::INSTR");

The VISA-VXI object vv now exists in the MATLAB workspace.
To open a connection to the instrument, type:

fopen (vv);

You can then display the class of vv with the whos command.

whos vv

Working with VXI and PXI Interfaces

Name Size Bytes Class
\AY; 1x1 882 visa object
Grand total is 15 elements using 882 bytes

After you create the VISA-VXI object, the following properties are automatically assigned
values. These properties provide information about the object based on its class type and
address information.

VISA-VXI Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-VXI object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vv.

vg.Name
ans =

"VISA-VX10-32*

vg.-RsrcName
ans =

"VX10::32::INSTR"

vg.-Type
ans =

"visa-vxi®
VISA-VXI Obiject Display

The VISA-VXI object provides you with a convenient display that summarizes important
address and state information. You can invoke the display summary these three ways:

* Type the VISA-VXI object at the command line.
+ Exclude the semicolon when creating a VISA-VXI object.

+ Exclude the semicolon when configuring properties using the dot notation.

5-11

5 Controlling Instruments Using VISA

5-12

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-VXI object vv is given below.

VISA-VX1 Object Using AGILENT Adaptor : VISA-VX10-32

Communication Address

ChassislIndex:
LogicalAddress:

Communication State
Status:
RecordStatus:

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

VISA-VXI Address

The VISA-VXI address consists of:

* The chassis index of the VXI chassis
* The logical address of the instrument installed in the VXI chassis

You must specify the logical address value via the resource name during VISA-VXI object

creation. Additionally,

you must include the chassis index value as part of the resource

name if it differs from the default value of 0. The properties associated with the chassis
and instrument address are as follows.

VISA-VXI Address Properties

Property Name Description

Chassislndex Indicate the index number of the VXI chassis.
LogicalAddress Specify the logical address of the VXI instrument.
Slot Indicate the slot location of the VXI instrument.

The Chassislndex and LogicalAddress properties are automatically updated with
the specified resource name values when you create the VISA-VXI object. The Slot

Working with VXI and PXI Interfaces

property is automatically updated after the object is connected to the instrument with
the Fopen function.

You can display the address property values for the VISA-VXI object vv created in
“Creating a VISA-VXI Object” on page 5-10.

fopen(vv)
vv.Chassislndex
ans =

0]

vv._LogicalAddress
ans =

32

vv.Slot
ans =

Register-Based Communication

VXI instruments are either message-based or register-based. Generally, it is assumed
that message-based instruments are easier to use, while register-based instruments
are faster. A message-based instrument has its own processor that allows it to interpret
high-level commands such as a SCPI command. Therefore, to communicate with a
message-based instrument, you can use the read and write functions fscanf, fread,
fprintf, and fwrite. For detailed information about these functions, refer to
“Communicating with Your Instrument” on page 2-8.

If the message-based instrument also contains shared memory, then you can access
the shared memory through register-based read and write operations. A register-based
instrument usually does not have its own processor to interpret high-level commands.
Therefore, to communicate with a register-based instrument, you need to use read and
write functions that access the register.

There are two types of register-based write and read functions: low-level and high-level.

The main advantage of the high-level functions is ease of use. Refer to “Using High-
Level Memory Functions” on page 5-16 for more information. The main advantage of

5-13

5 Controlling Instruments Using VISA

the low-level functions is speed. Refer to “Using Low-Level Memory Functions” on page
5-18 for more information.

The functions associated with register-based write and read operations are as follows.

VISA-VXI Register-Based Write and Read Functions

Function Name Description

memmap Map memory for low-level memory read and write operations.
mempeek Low-level memory read from the VXI register.

mempoke Low-level memory write to the VXI register.

memread High-level memory read from the VXI register.

memunmap Unmap memory for low-level memory read and write operations.
memwrite High-level memory write to the VXI register.

The properties associated with register-based write and read operations are given below.

VISA-VXI Register-Based Write and Read Properties

Property Name Description

MappedMemoryBase Indicate the base memory address of the mapped memory.

MappedMemorySize Indicate the size of the mapped memory for low-level read
and write operations.

MemoryBase Indicate the base address of the A24 or A32 space.

Memorylncrement Specify if the VXI register offset increments after data is
transferred.

MemorySize Indicate the size of the memory requested in the A24 or A32

address space.

MemorySpace Define the address space used by the instrument.

Understanding Your Instrument's Register Characteristics

This example explores the register characteristics for an Agilent E1432A 16-channel 51.2
kSa/s digitizer with a DSP module.

All VXI instruments have an A16 memory space consisting of 64 bytes. It is known as an
A16 space because the addresses are 16 bits wide. Register-based instruments provide

5-14

Working with VXI and PXI Interfaces

a memory map of the address space that describes the information contained within the
A16 space. Some VXI instruments also have an A24 or A32 space if the 64 bytes provided
by the A16 space are not enough to perform the necessary tasks. A VXI instrument
cannot use both the A24 and A32 space:

1

Create an instrument object — Create the VISA-VXI object vv associated with a
VXI chassis with index 0, and an Agilent E1432A digitizer with logical address 130.

v = visa("agilent”,"VX10::130::INSTR");
Connect to the instrument — Connect vv to the instrument.

Ffopen(vv)

The MemorySpace property indicates the type of memory space the instrument
supports. By default, all instruments support A16 memory space. However, this
property can be A16/A24 or A16/A32 if the instrument also supports A24 or A32
memory space, respectively.

vv.MemorySpace
ans =
Al6/A24

If the VISA-VXI object is not connected to the instrument, MemorySpace always
returns the default value of A16.

The MemoryBase property indicates the base address of the A24 or A32 space, and
is defined as a hexadecimal string. The MemorySize property indicates the size of
the A24 or A32 space. If the VXI instrument supports only the A16 memory space,
MemoryBase defaults to OH and MemorySize defaults to O.

vv.MemoryBase
ans =
200000H

vv._MemorySize
ans =
262144
Disconnect and clean up — When you no longer need vv, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(wv)

delete(vv)
clear vv

5-15

5 Controlling Instruments Using VISA

Using High-Level Memory Functions

This example uses the high-level memory functions, memread and memwrite, to access
register information for an Agilent E1432A 16-channel 51.2 kSa/s digitizer with a DSP
module. The main advantage of these high-level functions is ease of use — you can
access multiple registers with one function call, and the memory that is to be accessed
is automatically mapped for you. The main disadvantage is the lack of speed — they are
slower than the low-level memory functions.

Each register contains 16 bits, and is associated with an offset value that you supply
to memread or memwr ite. The first four registers of the digitizer are accessed in this
example, and are described below.

Agilent E1432A Register Information

Register Offset Description

1D 0 This register provides instrument configuration information
and is always defined as CFFF. Bits 15 and 14 are 1, indicating
that the instrument is register-based. Bits 13 and 12 are 0,
indicating that the instrument supports the A24 memory space.
The remaining bits are all 1, indicating the device ID.

Device 2 This register provides instrument configuration information.
Type Bits 15-12 indicate the memory required by the A24 space. The
remaining bits indicate the model code for the instrument.

Status 4 This register provides instrument status information. For
example, bit 15 indicates whether you can access the A24
registers, and bit 6 indicates whether a DSP communication
error occurred.

Offset 6 This register defines the base address of the instrument's A24
registers. Bits 15-12 map the VME Bus address lines A23-A20
for A24 register access. The remaining bits are all 0.

For more detailed information about these registers, refer to the HP E1432A User's
Guide.

1 Create an instrument object — Create the VISA-VXI object vv associated with
a VXI chassis with index 0, and an Agilent E1432A digitizer with logical address is
130.

vv = visa(Tagilent”,"VXI10::130::INSTR");

5-16

Working with VXI and PXI Interfaces

Connect to the instrument — Connect vV to the instrument.

fopen(vv)
Write and read data — The following command performs a high-level read of the
ID Register, which has an offset of 0.

regl
regl

memread(vv,0, "uintl6”,"A16")

53247

Convert regl to a hexadecimal value and a binary string. Note that the hex value is
CFFF and the least significant 12 bits are all 1, as expected.

dec2hex(regl)
ans =

CFFF
dec2bin(regl)
ans =
1100111111111111

You can read multiple registers with memread. The following command reads the
next three registers. An offset of 2 indicates that the read operation begins with the
Device Type Register.

reg24 = memread(vv,2, uintl6","Al6",3)
reg24 =

20993

50012

40960

The following commands write to the Offset Register and then read the value back.
Note that if you change the value of this register, you will not be able to access the
A24 space.

memwrite(vv,45056,6, "uintl6”,"Al6");
reg4 = memread(vv,6, uintl6","Al6")
reg4

45056

Note that the least significant 12 bits are all 0, as expected.
dec2bin(reg4,16)

ans =
1011000000000000

5-17

5 Controlling Instruments Using VISA

5-18

Restore the original register value, which is stored in the reg24 variable.

memwrite(vv,reg24(3),6,"uintl6”,"Al6");
Disconnect and clean up — When you no longer need vv, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

Using Low-Level Memory Functions

This example uses the low-level memory functions mempeek and mempoke to access
register information for an Agilent E1432A 16-channel 51.2 kSa/s digitizer with a DSP
module. The main advantage of these low-level functions is speed — they are faster than
the high-level memory functions. The main disadvantages include the inability to access
multiple registers with one function call, errors are not reported, and you must map the
memory that is to be accessed.

For information about the digitizer registers accessed in this example, refer to “Using
High-Level Memory Functions” on page 5-16:

1

Create an instrument object — Create the VISA-VXI object vv associated with a
VXI chassis with index 0, and an Agilent E1432A digitizer with logical address 130.

vv = visa("agilent”,"VX10::130::INSTR");
Connect to the instrument — Connect vv to the instrument.

fopen(vv)

Write and read data — Before you can use the low-level memory functions,

you must first map the memory space with the memmap function. If the memory
requested by memmap does not exist, an error is returned. The following command
maps the first 16 registers of the A16 memory space.

memmap(vv, "Al16",0,16);

The MappedMemoryBase and MappedMemorySize properties indicate if memory
has been mapped. MappedMemoryBase is the base address of the mapped memory
and is defined as a hexadecimal string. MappedMemorySize is the size of the
mapped memory. These properties are similar to the MemoryBase and MemorySize
properties that describe the A24 or A32 memory space.

vv .MappedMemoryBase

Working with VXI and PXI Interfaces

ans =
16737610H

vv_MappedMemorySize
ans =
16

The following command performs a low-level read of the ID Register, which has an
offset of 0.

regl
regl

mempeek(vv,0, "uintl6®)

53247

The following command performs a low-level read of the Offset Register, which has
an offset of 6.

reg4
reg4

mempeek(vv,6, "uintl6")

40960

The following commands write to the Offset Register and then read the value back.
Note that if you change the value of this register, you will not be able to access the
A24 space.

mempoke(vv,45056,6, "uintl6®);
mempeek(vv,6, "uintl6")
ans =

45056

Restore the original register value.
mempoke(vv,reg4,6,"uintl6”);

When you have finished accessing the registers, you should unmap the memory with
the memunmap function.

memunmap(vv)
vv .MappedMemoryBase
ans =

OH

vv ._MappedMemorySize
ans =
0

5-19

5 Controlling Instruments Using VISA

If memory is still mapped when the object is disconnected from the instrument, the
memory is automatically unmapped for you.

4 Disconnect and clean up — When you no longer need vv, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

5-20

Working with the GPIB-VXI Interface

Working with the GPIB-VXI Interface

In this section...

“Understanding VISA-GPIB-VXI” on page 5-21
“Creating a VISA-GPIB-VXI Object” on page 5-22
“VISA-GPIB-VXI Address” on page 5-24

Understanding VISA-GPIB-VXI

The GPIB-VXI interface is associated with a GPIB-VXI command module that you install

in slot 0 of a VXI chassis. This interface, along with the other relevant hardware, is
shown below.

[onfse
Computer VXI [~] | - | T T
chassis r— =
o s =
L-3
&
&
L3

IR
@

= [\
TN

[a—
Baa@

| [-] o
0 SEotl Stz Slotd Blotd Slot s
,T\ fl\

GPIB-VXI VXI

cornmand ingtrament
module

GPIB
sontroller

The GPIB-VXI interface is supported through a VISA-GPIB-VXI object. The features
associated with a VISA-GPIB-VXI object are similar to the features associated with GPIB

and VISA-VXI objects. Therefore, only functions and properties that are unique to VISA's
GPIB-VXI interface are discussed in this section.

Refer to “GPIB Overview” on page 4-2 to learn about writing and reading text and binary
data, using events and callbacks, using triggers, and so on. Refer to “Register-Based
Communication” on page 5-13to learn about accessing VXI registers.

5-21

5 Controlling Instruments Using VISA

5-22

Note The VISA-GPIB-VXI object does not support the spoll and trigger functions,
or the BusManagementStatus, HandshakeStatus, InterruptFcn, TriggerkFcn,
TriggerLine, and TriggerType properties.

Creating a VISA-GPIB-VXI Object

You create a VISA-GPIB-VXI object with the visa function. As shown in the preceding
figure, each object is associated with the following:

* A GPIB controller installed in your computer
+ A VXI chassis
+ A GPIB-VXI command module in slot 0 of the VXI chassis

* An instrument installed in the VXI chassis

visa requires the vendor name and the resource name as input arguments. The vendor
name is either agilent or ni. The resource name consists of the VXI chassis index
and the instrument logical address. You can find the VISA-GPIB-VXI resource name
for a given instrument with the configuration tool provided by your vendor, or with

the instrhwinfo function. (In place of the resource name, you can use an alias as
defined with your VISA vendor configuration tool.) As described in “Connecting to the
Instrument” on page 2-4, you can also configure property values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-GPIB-VXI object
associated with a VXI chassis with index 0, an Agilent E1406A Command Module in slot
0, and an Agilent E1441A Arbitrary Waveform Generator in slot 2 with logical address
80,

vgv = visa("agilent”,"GPIB-VX10::80::INSTR");

The VISA-GPIB-VXI object vgv now exists in the MATLAB workspace.
To open a connection to the instrument type:

fopen (vgv);

You can then display the class of vgv with the whos command.

whos vgv
Name Size Bytes Class

Working with the GPIB-VXI Interface

vgv 1x1 892 visa object
Grand total is 20 elements using 892 bytes

After you create the VISA-GPIB-VXI object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.

VISA-GPIB-VXI Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-GPIB-VXI object.
RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vgv.

vgv.Name
ans =
VISA-GP1B-VX10-80

vgv.RsrcName
ans =
GPIB-VXI10::80::INSTR

vgv.Type
ans =
visa-gpib-vxi

Note The GPIB-VXI communication interface is a combination of the GPIB and VXI
interfaces. Therefore, you can also use a VISA-GPIB object to communicate with
instruments installed in the VXI chassis, or to communicate with non-VXI instruments
connected to the slot 0 controller.

VISA-GPIB-VXI Obiject Display

The VISA-GPIB-VXI object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

5-23

5 Controlling Instruments Using VISA

* Type the VISA-GPIB-VXI object at the command line.
+ Exclude the semicolon when creating a VISA-GPIB-VXI object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-GPIB-VXI object vgV is given below.
VISA-GPIB-VXI Object Using AGILENT Adaptor : VISA-GPIB-VX10-80

Communication Address

ChassislIndex: 0

LogicalAddress: 80
Communication State

Status: closed

RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0
VISA-GPIB-VXI Address

The VISA-GPIB-VXI address consists of a VXI component and a GPIB component. The
VXI component includes the following:

* The chassis index of the VXI chassis

* The logical address of the VXI instrument; the logical address must be 0, or it must be
divisible by 8

* The slot of the VXI instrument

The GPIB component includes

* The board index of the GPIB controller installed in your computer
* The primary address of the GPIB-VXI command module in slot 0

* The secondary address of the VXI instrument

5-24

Working with the GPIB-VXI Interface

You must specify the logical address value via the resource name during VISA-GPIB-
VXI object creation. Additionally, you must include the chassis index value as part of the

resource name if it differs from the default value of 0. The properties associated with the
VISA-GPIB-VXI address are given below.

VISA-GPIB-VXI Address Properties

Property Name Description

BoardIlndex Indicate the index number of the GPIB board.

Chassislndex Specify the index number of the VXI chassis.

LogicalAddress Specify the logical address of the VXI instrument.

PrimaryAddress Indicate the primary address of the GPIB-VXI command
module.

SecondaryAddress Indicate the secondary address of the VXI instrument.

Slot Indicate the slot location of the VXI instrument.

The Chassislndex and LogicalAddress properties are automatically updated
with the specified resource name values when you create the VISA-GPIB-VXI object.
The BoardIndex, PrimaryAddress, SecondaryAddress, and SIot properties are
automatically updated after the object is connected to the instrument with the fopen
function.

You can display the address property values for the VISA-GPIB-VXI object vgv created
in “Creating a VISA-GPIB-VXI Object” on page 5-22.

fopen(vgv)

get(vgv,{"BoardIndex”, "ChassisIndex”, "LogicalAddress",. ..
"PrimaryAddress”, "SecondaryAddress”®, "Slot"})

ans =

0] 0] [80] o1 [10] [21

5-25

5 Controlling Instruments Using VISA

Working with the Serial Port Interface

5-26

In this section...

“Understanding the Serial Port” on page 5-26
“Creating a VISA-Serial Object” on page 5-26

“Configuring Communication Settings” on page 5-28

Understanding the Serial Port

The serial port interface is supported through a VISA-serial object. The features
associated with a VISA-serial object are similar to the features associated with a serial
port object. Therefore, only functions and properties that are unique to VISA's serial port
interface are discussed in this section.

Refer to “Serial Port Overview” on page 6-2 to learn about writing and reading text
and binary data, using events and callbacks, using serial port control lines, and so on.

Note The VISA-serial object does not support the serialbreak function, the
BreakInterruptFcn property, and the PinStatusFcn property.

Creating a VISA-Serial Object

You create a VISA-serial object with the visa function. Each VISA-serial object is
associated with an instrument connected to a serial port on your computer.

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the name of the

serial port connected to your instrument. You can find the VISA-serial resource name
for a given instrument with the configuration tool provided by your vendor, or with

the instrhwinfo function. (In place of the resource name, you can use an alias as
defined with your VISA vendor configuration tool.) As described in “Connecting to the
Instrument” on page 2-4, you can also configure property values during object creation.

Some vendors do not provide VISA serial support until you enable a port in their
configuration tools. Before you create a VISA object, find the instrument in the
appropriate vendor VISA explorer. When you find the instrument configured, note the
resource string and create the object using that information. For example, to create

Working with the Serial Port Interface

a VISA-serial object that is associated with the COM1 port, and that uses National
Instruments VISA,

vs = visa("ni","ASRL1::INSTR");

The VISA-serial object vs now exists in the MATLAB workspace.
To open a connection with the instrument, type:

fopen (vs);

You can then display the class of vs with the whos command.

whos vs
Name Size Bytes Class
Vs 1x1 888 visa object

Grand total is 18 elements using 888 bytes

After you create the VISA-serial object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.

VISA-Serial Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-serial object.
Port Indicate the serial port name.

RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vs.

vs._.Name
ans =
VISA-Serial-ASRL1

vs.Port
ans =
ASRL1

VS .RsrcName

5-27

5 Controlling Instruments Using VISA

5-28

ans =
ASRL1::INSTR

vs.Type

ans =
visa-serial

VISA-Serial Object Display

The VISA-serial object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

* Type the VISA-serial object at the command line.
* Exclude the semicolon when creating a VISA-serial object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-serial object vs is given below.

VISA-Serial Object Using NI Adaptor : VISA-Serial-ASRL1

Communication Settings

Port: ASRL1
BaudRate: 9600
Terminator: "LF*

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

dle

OO O m

Configuring Communication Settings

Before you can write or read data, both the VISA-serial object and the instrument must
have identical communication settings. Configuring serial port communications involves

Working with the Serial Port Interface

specifying values for properties that control the baud rate and the “Serial Data Format”
on page 6-8. These properties are given below.

VISA-Serial Communication Properties

Property Name | Description

BaudRate Specify the rate at which bits are transmitted.

DataBits Specify the number of data bits to transmit.

Parity Specify the type of parity checking.

StopBits Specify the number of bits used to indicate the end of a byte.

Terminator Specify the character used to terminate commands written to the
instrument.

Refer to your instrument documentation for an explanation of its supported
communication settings. Note that the valid values for StopBits are 1 and 2 and the
valid values for Terminator do not include CR/LF and LF/CR. These property values
differ from the values supported for the serial port object.

You can display the default communication property values for the VISA-serial object vs
created in “Creating a VISA-Serial Object” on page 5-26.

vs.BaudRate
ans =
9600

vs.DataBits
ans =
8

vs._Parity
ans =
none

vs.StopBits
ans =
1

vs.Terminator
ans =
LF

5-29

5 Controlling Instruments Using VISA

Working with the USB Interface

5-30

In this section...

“Creating a VISA-USB Object” on page 5-30
“VISA-USB Address” on page 5-32

Creating a VISA-USB Object

You create a VISA-USB object with the visa function. Each VISA-USB object is
associated with an instrument connected to a USB port on your computer.

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the USB board index,
manufacturer ID, model code, serial number, and interface number of the connected
instrument. You can find the VISA-USB resource name for a given instrument with

the configuration tool provided by your vendor, or with the instrhwinfo function.

(In place of the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page 2-4, you can
also configure property values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-USB object that
uses National Instruments VISA,

vu = visa("ni","USB::0x1234::125::A22-5::INSTR");

The VISA-USB object vu now exists in the MATLAB workspace.
To open a connection to the instrument, type:

fopen (vu);

You can display the class of vu with the whos command.

whos wvu
Name Size Bytes Class
vu 1x1 882 visa object

Grand total is 15 elements using 882 bytes

Working with the USB Interface

After you create the VISA-USB object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.

VISA-USB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-USB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vs.

vu.Name
ans =
VISA-USB-0-0x1234-125-A22-5-0

vu.RsrcName
ans =
USB::0x1234::125::A22-5::INSTR

vu.Type
ans =
visa-usb

VISA-USB Obiject Display

The VISA-USB object provides you with a convenient display that summarizes important
address and state information. You can invoke the display summary these three ways:

* Type the VISA-USB object at the command line.
* Exclude the semicolon when creating a VISA-USB object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-USB object vs is given below.

VISA-USB Object Using NI Adaptor : VISA-USB-0-0x1234-125-A22-5-0

Communication Address

5-31

5 Controlling Instruments Using VISA

ManufacturerliD:
ModelCode:
SerialNumber:

Communication State
Status:
RecordStatus:

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

VISA-USB Address

0x1234
125
A22-5

closed
off

dle

OO0OQOm

The VISA-USB address consists of

* Board index (optional, from the VISA configuration)

* Manufacturer ID of the instrument

* Model code of the instrument

+ Serial number of the instrument

* Interface number (optional, from the VISA configuration)

You specify these address property values via the resource name during VISA-USB object
creation. The instrument address properties are given below.

VISA-USB Address Properties

Property Name Description

BoardIndex Specify the index number of the USB board in VISA configuration
(optional — defaults to 0).

Interfacelndex Specify the USB interface number (optional).

ManufacturerlD Specify the manufacturer ID of the USB instrument.

ModelCode Specify the model code of the USB instrument.

SerialNumber Specify the index of the USB instrument on the USB hub.

The properties are automatically updated with the specified resource name values when
you create the VISA-USB object.

5-32

Working with the USB Interface

You can display the address property values for the VISA-USB object vu, created in
“Creating a VISA-USB Object” on page 5-30.

fopen(vu)
vu.ManufacturerlD
ans =

0x1234

vu.ModelCode
ans =
125

vu.SerialNumber

ans =
A22-5

5-33

5 Controlling Instruments Using VISA

Working with the TCP/IP Interface for VXI-11 and HiSLIP

5-34

In this section...

“Understanding VISA-TCP/IP” on page 5-34
“Creating a VISA-TCPIP Object” on page 5-34

“VISA-TCPIP Address” on page 5-36

Understanding VISA-TCP/IP

The TCP/IP interface is supported through a VISA-TCP/IP object. The features
associated with a VISA-TCP/IP object are similar to the features associated with a
tcpip object. Therefore, only functions and properties that are unique to VISA's TCP/IP
interface are discussed in this section. Both VXI-11 and HiSLIP protocols are supported.

Refer to “TCP/IP and UDP Comparison” on page 7-2 to learn about writing and
reading text and binary data, using events and callbacks, and so on.

Creating a VISA-TCPIP Obiject

You create a VISA-TCPIP object with the visa function. Each VISA-TCPIP object is
associated with an instrument connected to your computer.

visa requires the vendor name and the resource name as input arguments. The vendor
name can be agilent, ni, or tek. The resource name consists of the TCP/IP board
index, IP address or host name, and LAN device name of your instrument. You can

find the VISA-TCPIP resource name for a given instrument with the configuration tool
provided by your vendor, or with the instrhwinfo function. (In place of the resource
name, you can use an alias as defined with your VISA vendor configuration tool.) As
described in “Connecting to the Instrument” on page 2-4, you can also configure property
values during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-TCPIP object
that uses National Instruments VISA associated with an instrument at IP address
216.148.60.170 using the VXI-11 protocol,

vt = visa("ni","TCPIP::216.148.60.170: :INSTR");

The VISA-TCPIP object vt now exists in the MATLAB workspace.

Working with the TCP/IP Interface for VXI-11 and HiSLIP

To open an connection to the instrument, type:
fopen (vt);

You can display the class of vt with the whos command.

whos vt
Name Size Bytes Class
vt 1x1 886 visa object

Grand total is 17 elements using 886 bytes

After you create the VISA-TCPIP object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.

VISA-TCPIP Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-TCPIP object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vt.

vt._.Name
ans =
VISA-TCPIP-216.148.60.170

vt.RsrcName
ans =
TCPIP::216.148.60.170::INSTR

vt._Type
ans =
visa-tcpip

VISA-TCPIP Object Display

The VISA-TCPIP object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

5-35

5 Controlling Instruments Using VISA

5-36

* Type the VISA-TCPIP object at the command line.
* Exclude the semicolon when creating a VISA-TCPIP object.
+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-TCPIP object vt is given below.

VISA-TCPIP Object Using NI Adaptor : VISA-TCPIP-216.148.60.170

Communication Address

RemoteHost: 216.148.60.170
Communication State

Status: closed

RecordStatus: off

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

dle

OO m

VISA-TCPIP Address

The VISA-TCPIP address consists of

* Board index (optional, from the VISA configuration)
* Remote host of the instrument

* The protocol, either VXI-11 or HiSLIP

* LAN device name of the instrument (optional)

You specify these address property values via the resource name during VISA-TCPIP
object creation. The instrument address properties are given below.

VISA-TCPIP Address Properties

Property Name Description

Boardlndex Specify the index number of the TCP/IP board in VISA
configuration (optional — defaults to 0).

Working with the TCP/IP Interface for VXI-11 and HiSLIP

Property Name Description

RemoteHost Specify the remote host name or IP address of the
instrument.

LANName Specify the LAN device name of the instrument.

The properties are automatically updated with the specified resource name values when
you create the VISA-TCPIP object.

You can display the address property values for the VISA-TCPIP object vt, created in
“Creating a VISA-TCPIP Object” on page 5-34.

fopen(vt)

vt.RemoteHost

ans =
216.148.60.170

5-37

5 Controlling Instruments Using VISA

Working with the RSIB Interface

5-38

In this section...

“Understanding VISA-RSIB” on page 5-38
“Creating a VISA-RSIB Object” on page 5-38

“VISA-RSIB Address” on page 5-40

Understanding VISA-RSIB

RSIB Passport for VISA allows you to control and exchange data remotely with Rohde &
Schwarz spectrum and network analyzers over a local area network. The RSIB interface
is supported by National Instruments VISA only. It also requires the Rohde & Schwarz
VISA passport. You can use MATLAB and Rohde & Schwarz spectrum and network
analyzers to perform complex data analysis on measured telecommunication signals and
to verify simulated data against real measurement data.

Creating a VISA-RSIB Object

You create a VISA-RSIB object with the visa function. Each VISA-RSIB object is
associated with an instrument connected to your computer.

visa requires the vendor name and the resource name as input arguments. The only
supported vendor name is ni. The resource name consists of the IP address or host name
of the instrument. You can find the VISA-RSIB resource name for a given instrument
with the configuration tool provided by your vendor, or with the instrhwinfo function.
(In place of the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page 2-4, you can
also configure properties during object creation.

Before you create a VISA object, you must find the instrument in the appropriate vendor
VISA explorer. When you find the instrument configured, note the resource string and
create the object using that information. For example, to create a VISA-RSIB object that
uses National Instruments VISA and associated with an instrument with IP address
192.168.1.33,

vr = visa("ni","RSIB::192.168.1.33::INSTR");

The VISA-RSIB object vr now exists in the MATLAB workspace.

Working with the RSIB Interface

To open a connection to the instrument, type:
fopen (vr);

You can display the class of vr with the whos command.

whos vr
Name Size Bytes Class
vr 1x1 884 visa object

Grand total is 16 elements using 884 bytes

After you create the VISA-RSIB object, the properties listed below are automatically
assigned values. These properties provide descriptive information about the object based
on its class type and address information.

VISA-RSIB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-RSIB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vr.

vr .Name
ans =
VISA-RSI1B0-192.168.1.33

vr .RsrcName
ans =
RSIB0::192.168.1.33::INSTR

vr.Type

ans =
visa-RSIB

VISA-RSIB Object Display

The VISA-RSIB object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary these
three ways:

5-39

5 Controlling Instruments Using VISA

* Type the VISA-RSIB object at the command line.
* Exclude the semicolon when creating a VISA-RSIB object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the VISA-RSIB object vr is given below.

VISA-RSIB Object Using NI Adaptor : VISA-RSIB-192.168.1.33

Communication Address

RemoteHost: 192.168.1.33
Communication State

Status: closed

RecordStatus: off

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

dle

OO m

VISA-RSIB Address
The VISA-RSIB address consists of

* Remote host of the instrument

You specify the address property value via the resource name during VISA-RSIB object
creation. The instrument address property is given below.

VISA-RSIB Address Property
Property Name Description
RemoteHost Specify the remote host name or IP address of the instrument

The property is automatically updated with the specified resource name value when you
create the VISA-RSIB object.

You can display the address property value for the VISA-RSIB object vr, created in
“Creating a VISA-RSIB Object” on page 5-38.

5-40

Working with the RSIB Interface

fopen(vr)

vr .RemoteHost

ans =
192.168.1.33

5-41

5 Controlling Instruments Using VISA

Working with the Generic Interface

5-42

In this section...

“Generic VISA” on page 5-42
“VISA Node and Generic VISA Support in Test & Measurement Tool” on page 5-42
“Generic VISA Support in the Command-line Interface” on page 5-42

Generic VISA

In both the command-line toolbox and the Test & Measurement Tool, a generic VISA
interface is now supported. In the Test & Measurement Tool, generic devices will appear
in the More node under the VISA node. In the command-line toolbox, they are available
as a type "generic”.

For example, if you have a generic VISA device that is made by National Instruments,
you could use the instrhwinfo function to see it, as follows.
instrhwinfo("visa®,"ni", "generic"®)

This generic support can be used to communicate over open VISA sockets, USB Raw, etc.

VISA Node and Generic VISA Support in Test & Measurement Tool

In the Test & Measurement Tool, instruments that use the VISA interface show up
under the VISA node in the instrument tree. For example, if you are using a TCP/TP
instrument with the VISA interface, instead of a TCP/IP - VISA node in the tree, you
will see a VISA node, with a TCP/IP node under it. It is easier to see what protocols can
be used with the VISA interface with the VISA node.

Generic devices will appear in a More node under the VISA node in the instrument tree.
If your instrument is recognizable as a type such as "gpib” or "tcpip”, it will show
up in that type-specific node. For example, a TCP/IP instrument would show up in the
TCPIP node under the VISA node. But if it is a generic instrument, it will show up in
the More node.

Generic VISA Support in the Command-line Interface

You can use the instrhwinfo function to see generic VISA devices.

instrhwinfo(" INTERFACE", “ADAPTOR®, "TYPE®)

Working with the Generic Interface

INTERFACE is "visa®. ADAPTOR can be "agilent”, "ni " or "tek”, depending on
whether your instrument vendor is Agilent, National Instruments, or Tektronix. TYPE
can be "gpib®, "vxi", "gpib-vxi®, "serial”, "tcpip”, "usb”, "rsib", "pxi~, or
"generic”. Use "generic” when it is a generic device or form of communication.

For example:

»r ilnstrhwinfof'visa', 'ni', 'generic')
ans =

AdaptorD]l1lName: [1x73 char]
AdaptorD]l1lVersion: 'Version 3.0.0°
AdaptorHame: 'HI'
AvailableCha=z=i=s: []
AvaillableSerialPorts: []
In=talledBoardlid=s: {ixl cell}
ObhjectConstructorHamne: {4xl cell}
SerialPort=s: []
VendorD]l lHamne: 'wisaidd dll’
VendorDriverDescription: 'Hational Instruments VISA Driwver!'
VendorDriverVersion: 4.1000

This shows that there are four generic devices using the NI adaptor. If you look at the
object constructor names, you can see the four devices.

»r» an=z.ObjectConstructorHane

ans =
'wizmal 'ni', 'TCPRIPD: .svstemlinux.dhcp: 7. SOCKET') ;'
‘wizal 'ni'. 'USBO: :0=3923::0=x7166: :01574E49: (RAW ;"
'wizal'ni', 'TCPIPO::172.31 . 146.177::4000: :S0CKET') ;"

'TCPIFO: a—d&0541-000006 . dhep: (5025 (SOCKET') ;"

wizal 'ni

In this example, there are three instruments capable of TCP/IP socket communication,
and one of raw USB communication.

To communicate with a generic instrument using the generic interface, use the same
functions, properties, and work flows described in the other interface sections of the VISA
documentation.

5-43

5 Controlling Instruments Using VISA

Note: Some VISA drivers do not support EOI Mode. Therefore, if a device does not
support EOI Mode, the VISA generic adaptor will default to "off" for the EOI Mode
property, so that it does not cause a failure.

5-44

Reading and Writing ASCIl Data Using VISA

Reading and Writing ASCII Data Using VISA

In this section...

“Configuring and Connecting to the Instrument” on page 5-46
“Writing ASCII Data” on page 5-46

“ASCII Write Properties” on page 5-47

“Reading ASCII Data” on page 5-48

“ASCII Read Properties” on page 5-49

“Cleanup” on page 5-50

This example explores ASCII read and write operations with a VISA object. The
instrument used was a Tektronix® TDS 210 oscilloscope.

The VISA object supports seven interfaces: serial, GPIB, VXI, GPIB-VXI, TCPIP, USB,
and RSIB. This example explores ASCII read and write operations using a VISA-GPIB
object. However, ASCII read and write operations for VISA-GPIB, VISA-VXI, VISA-
GPIB-VXI, VISA-TCPIP, VISA-SERIAL, and VISA-USB objects are identical to each
other. Therefore, you can use the same commands. The only difference is the resource
name specified in the VISA constructor.

ASCII read and write operations for the VISA-serial object are identical to ASCII read
and write operations for the serial port object. Therefore, to learn how to perform ASCII

read and write operations for the VISA-serial object, you should refer to the Serial Port
ASCII Read/Write tutorial.

ASCII read and write operations for the VISA-RSIB object are identical to the ASCII
read and write operations for the VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-TCPIP,
and VISA-USB objects, except the VISA-RSIB object does not support the EOSCharCode
and EOSMode properties.

These functions are used when reading and writing text:

Function Purpose
fprintf Write text to an instrument.
fscanf Read data from an instrument and format as text.

These properties are associated with reading and writing text:

5-45

5 Controlling Instruments Using VISA

5-46

Property Purpose

ValuesReceived Specifies the total number of values read from the instrument.

ValuesSent Specifies the total number of values sent to the instrument.

InputBufferSize |[Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

EOSMode Configures the End-Of-String termination mode.
EOSCharCode Specifies the End-Of-String terminator.
EOIMode Enables or disables the assertion of the EOI mode at the end of a

write operation.

Configuring and Connecting to the Instrument

You need to create a VISA-GPIB object. In this example, an object is created using the ni
driver and the VISA resource string shown below.

v = visa("ni", "GPIBO::2::INSTR");

Before you can perform a read or write operation, you must connect the VISA-GPIB
object to the instrument with the fopen function.

fopen(v);

If the object was successfully connected, its Status property is automatically configured
to open.

v.Status

ans =
open

Writing ASCIl Data

You use the Fprintf function to write ASCII data to the instrument. For example,
the"Display:Contrast” command will change the display contrast of the oscilloscope.

fprintf(v, "Display:Contrast 45%);

Reading and Writing ASCIl Data Using VISA

By default, the Fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

+ All the data is written

* A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. You can
also specify the format of the command written by providing a third input argument to

fprintf. The accepted format conversion characters include: d, 1, 0, u, %, X, f, e, E, g, G,
¢, and s. For example:

fprintf(v, "%s", "Display:Contrast 45%);

ASCIl Write Properties
OutputBufferSize

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

v.OutputBufferSize
ans =
512

If the command specified in Fprintf contains more than 512 bytes, an error is returned
and no data is written to the instrument.

EOIMode, EOSMode, and EOSCharCode

By default, the End or Identify (EOI) line is asserted when the last byte is written to the
instrument. This behavior is controlled by the EOIMode property. When EOIMode is set
to on, the EOI line is asserted when the last byte is written to the instrument. When
EOIMode is set to off, the EOI line is not asserted when the last byte is written to the
instrument.

All occurrences of \n in the command written to the instrument are replaced with the
EOSCharCode property value if EOSMode is set to write or read&write.

ValuesSent

The ValuesSent property is updated by the number of values written to the instrument.
Note that by default EOSMode is set to none. Therefore, EOSCharCode is not sent as the
last byte of the write.

5-47

5 Controlling Instruments Using VISA

5-48

fprintf(v, "Display:Contrast 45%);
v.ValuesSent
ans =

57

Clear any data in the input buffer before moving to the next step.

Flushinput(v);

Reading ASCII Data

You use the fscanf function to read ASCII data from the instrument. For example,
the oscilloscope command "Display:Contrast?” returns the oscilloscope's display
contrast:

fprintf(v, "Display:Contrast?");
data = fscanf(v)

data =
45

Fscanf blocks until one of the following occurs:

* The EOI line is asserted

* The terminator is received as specified by the EOSCharCode property

* A timeout occurs as specified by the Timeout property

* The input buffer is filled

* The specified number of values is received

By default, the fscanT function reads data using the "%c*® format. You can also specify
the format of the data read by providing a second input argument to fscanf. The

accepted format conversion characters include: d, 1, o, u, x, X, f, e, E, g, G, ¢, and s. For
example, the following command will return the voltage as a decimal:

fprintf(v, "Display:Contrast?");
data = fscanf(v, "%d")

data =

45

Reading and Writing ASCIl Data Using VISA

isnumeric(data)
ans =

1

ASCII Read Properties

InputBufferSize

The InputBufferSize property specifies the maximum number of bytes you can read
from the instrument. By default, InputBufferSize is 512.

v. InputBufferSize
ans =
512

ValuesReceived

The ValuesReceived property indicates the total number of values read from the
instrument. Note the last value received is a linefeed.

fprintf(v, "Display:Contrast?”");
data = fscanf(v)

data =
45
v.ValuesReceived
ans =
9
EOSMode and EOSCharCode

To terminate the data transfer based on receiving EOSCharCode, you should set the
EOSMode property to read or read&write and the EOSCharCode property to the ASCII
code for which the read operation should terminate. For example, if you set EOSMode to
read and EOSCharCode to 10, then one of the ways that the read terminates is when the
linefeed character is received.

5-49

5 Controlling Instruments Using VISA

5-50

The standard response to the vertical gain query is in scientific notation.

fprintf(v, "CHl:Scale?")
data = fscanf(v)

data =
1.0EO

Now configure the VISA-GPIB object to terminate the read operation when the 'E'
character 1s received. The first read terminates when the 'E' character is received.

set(v, "EOSMode®", "read")

set(v, "EOSCharCode®, double("E"))

fprintf(v, "CHl:Scale?")

data = fscanf(v)

data =

1.0E

If you perform a second read operation, it terminates when the EOI line is asserted.

data = fscanf(v)

data

0]

Cleanup

If you are finished with the VISA-GPIB object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(Vv);
delete(Vv);
clear v

Reading and Writing Binary Data Using VISA

Reading and Writing Binary Data Using VISA

In this section...

“Configuring and Connecting to the Instrument” on page 5-52
“Writing Binary Data” on page 5-52

“Binary Write Properties” on page 5-53

“Reading Binary Data” on page 5-54

“Binary Read Properties” on page 5-54

“Cleanup” on page 5-56

This example explores binary read and write operations with a VISA object. The
instrument used was a Tektronix® TDS 210 oscilloscope.

This tutorial explores binary read and write operations using a VISA-GPIB object.
However, binary read and write operations for VISA-GPIB, VISA-VXI, VISA-GPIB-VXI,
VISA-TCPIP, and VISA-USB objects are identical to each other. Therefore, you can use
the same commands. The only difference is the resource name specified in the VISA
constructor.

Binary read and write operations for the VISA-serial object are identical to binary read
and write operations for the serial port object. Therefore, to learn how to perform binary
read and write operations for the VISA-serial object, you should refer to the Serial Port
Binary Read/Write tutorial.

Binary read and write operations for the VISA-RSIB object are identical to the binary
read and write operations for the VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-TCPIP,
and VISA-USB objects, except the VISA-RSIB object does not support the EOSCharCode
and EOSMode properties.

These functions are used when reading and writing binary data:

Function Purpose
fread Read binary data from the instrument.
fwrite Write binary data to the instrument.

These properties are associated with reading and writing binary data:

5-51

5 Controlling Instruments Using VISA

5-52

Property Purpose

ValuesReceived Specifies the total number of values read from the instrument.

ValuesSent Specifies the total number of values sent to the instrument.

InputBufferSize |[Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

EOSMode Configures the End-Of-String termination mode.

EOSCharCode Specifies the End-Of-String terminator.

Configuring and Connecting to the Instrument

You need to create a VISA-GPIB object. In this example, an object is created using the ni
driver and the VISA resource string shown below.

v = visa("ni", "GPIBO::2::INSTR");
Before you can perform a read or write operation, you must connect the VISA-GPIB
object to the instrument with the fopen function.

fopen(v);

If the object was successfully connected, its Status property is automatically configured
to open.

v.Status
ans =
open

Writing Binary Data

You use the fwrite function to write binary data to the instrument. For example, the
following command will send a sine wave to the instrument. By default, the fwrite
function operates in a synchronous mode. This means that fwrite blocks the MATLAB
command line until one of the following occurs:

+ All the data is written
+ A timeout occurs as specified by the Timeout property

Reading and Writing Binary Data Using VISA

By default the fwrite function writes binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Note: When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one Uuint32 value consists of four bytes.

Binary Write Properties
OutputBufferSize

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

v.OutputBufferSize
ans =
512

Configure the object's output buffer size to 3000. Note the OutputBufferSize can be
configured only when the object is not connected to the instrument.

fclose(Vv);
v.OutputBufferSize = 3000;
fopen(v);

Writing Int16 Binary Data

Now write a waveform as an int16 array.

fprintf(v, "Data:Destination RefB");
fprintf(v, "Data:Encdg SRPbinary");
fprintf(v, "Data:Width 27%);
fprintf(v, "Data:Start 1%);

t = (0:499) .* 8 * pi / 500;
data = round(sin(t) * 90 + 127);
fprintf(v, "CURVE #35007);

Note that one int16 value consists of two bytes. Therefore, the following command will
write 1000 bytes.

5-53

5 Controlling Instruments Using VISA

fwrite(v, data, "iIntl6")
ValuesSent

The ValuesSent property indicates the total number of values written to the instrument
since the object was connected to the instrument.

v.ValuesSent
ans =
576

Reading Binary Data
You use the fread function to read binary data from the instrument.

By default, the fread function reads data using the uchar precision and blocks the
MATLAB command line until one of the following occurs:

+ A timeout occurs as specified by the Timeout property

* The input buffer is filled

+ The specified number of values is read

* The EOI line is asserted

* The terminator is received as specified by the EOSCharCode property (if defined)
By default the fread function reads binary data using the uchar precision. However,

other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note: When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

Binary Read Properties
InputBufferSize

The InputBufferSize property specifies the maximum number of bytes you can read
from the instrument. By default, InputBufferSize is 512.

5-54

Reading and Writing Binary Data Using VISA

v. InputBufferSize
ans =
512

Configure the object's input buffer size to 5100. Note the InputBufferSize can be
configured only when the object is not connected to the instrument.

fclose(v);
v. InputBufferSize = 5100;
fopen(v);

Reading Int16 Binary Data

Now read the same waveform on channel 1 as an int16 array.
fprintf(v, "Data:Source CH1%);

fprintf(v, "Data:Encdg SRIbinary®);

fprintf(v, "Data:Width 2%);

fprintf(v, "Data:Start 1%);

fprintf(v, "Curve?")

Note that one int16 value consists of two bytes. Therefore, the following command will
read 2400 bytes.

data = fread(v, 1200, "intl6");
ValuesReceived

The ValuesReceived property indicates the total number of values read from the
instrument.

v.ValuesReceived
ans =
1200
Since we may not have read all of the values, clear the input buffer.
flushinput(v);
EOSMode and EOSCharCode

For VISA-GPIB, objects, the terminator is defined by setting the object's EOSMode
property to read and setting the object's EOSCharCode property to the ASCII code for

5-55

5 Controlling Instruments Using VISA

5-56

the character received. For example, if the EOSMode property is set to read and the
EOSCharCode property is set to 10, then one of the ways that the read terminates is
when the linefeed character is received.

Configure the GPIB object's terminator to the letter E.

set(v, "EOSMode", "read”);
set(v, "EOSCharCode®, double("E"));

Now, read the channel 1's signal frequency.

fprintf(v, “Measurement:Measl:Source CH1%)
fprintf(v, “Measurement:Measl:Type Freq-®)
fprintf(v, “Measurement:Measl:Value?")

Note: that the first read terminates due to the EOSCharCode being detected, while the
second read terminates due to the EOI line being asserted.

data = fread(v, 30);
char(data)*

Warning: The EOl line was asserted or the EOSCharCode was detected
% before SIZE values were available.

ans =
9.9E

data = fread(v, 30);
char(data)*

Warning: The EOl line was asserted or the EOSCharCode was detected
% before SIZE values were available.

ans =

37

Cleanup

If you are finished with the VISA-GPIB object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(V);

Reading and Writing Binary Data Using VISA

delete(Vv);
clear v

5-57

5 Controlling Instruments Using VISA

Asynchronous Read and Write Operations Using VISA

5-58

In this section...

“Functions and Properties” on page 5-58

“Synchronous Versus Asynchronous Operations” on page 5-59
“Configuring and Connecting to the Instrument” on page 5-59
“Reading Data Asynchronously” on page 5-60

“Asynchronous Read Properties” on page 5-60

“Using Callbacks During an Asynchronous Read” on page 5-61
“Writing Data Asynchronously” on page 5-62

“Cleanup” on page 5-62

This example explores asynchronous read and write operations using a VISA-GPIB
object. The instrument used was a Tektronix® TDS 2024 oscilloscope.

This tutorial explores asynchronous read and write operations for a VISA-GPIB-VXI
object. However, asynchronous read and write operations for VISA-GPIB, VISA-VXI,
VISA-GPIB-VXI, VISA-TCPIP, and VISA-USB objects are identical to each other.
Therefore, you can use the same commands. The only difference is the resource name
specified in the VISA constructor.

Asynchronous read and write operations for the VISA-serial object are identical to
asynchronous read and write operations for the serial port object. Therefore, to learn how
to perform asynchronous read and write operations for the VISA-serial object, you should
refer to the Serial Port Asynchronous Read/Write tutorial.

Asynchronous read and write operations are not supported for the VISA-RSIB object.

Functions and Properties

These functions are associated with reading and writing text asynchronously:

Function Purpose

fprintf Write text to a instrument.

readasync Asynchronously read bytes from an instrument.
stopasync Stop an asynchronous read or write operation.

Asynchronous Read and Write Operations Using VISA

These properties are associated with reading and writing text asynchronously:

Property Purpose

BytesAvailable Indicates the number of bytes available in the input buffer.

TransferStatus Indicates what type of asynchronous operation is in progress.

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Synchronous Versus Asynchronous Operations

The VISA object can operate in either synchronous or asynchronous mode. In
synchronous mode, the MATLAB command line is blocked until

* The read or write operation completes

+ A timeout occurs as specified by the Timeout property

In asynchronous mode, control is immediately returned to the MATLAB command line.
Additionally, you can use callback properties and callback functions to perform tasks
as data is being written or read. For example, you can create a callback function that
notifies you when the read or write operation has finished.

Configuring and Connecting to the Instrument

You need to create a VISA-GPIB object. In this example, an object is created using the ni
driver and the VISA resource string shown below.

v = visa("ni", "GPIBO::2::INSTR")

Before you can perform a read or write operation, you must connect the VISA-GPIB
object to the instrument with the fopen function.

fopen(v)

If the object was successfully connected, its Status property is automatically configured
to open.

v.Status

ans =
open

5-59

5 Controlling Instruments Using VISA

5-60

Reading Data Asynchronously

The VISA-GPIB object's asynchronous read functionality is controlled with the
readasync function. Query the instrument for the channel 1 vertical scale:

fprintf(v, "CHl:Scale?");

The readasync function can asynchronously read the data from the instrument. The
readasync function returns control to the MATLAB command prompt immediately.

readasync(v, 20);

The readasyn function without a size specified will assume size is given by the
difference between the InputBufferSize property value and the BytesAvailable
property value. In the above example, size is 20. The asynchronous read terminates when
one of the following occurs:

* The terminator is read as specified by the EOSCharCode property
* The specified number of bytes are stored in the input buffer

+ A timeout occurs as specified by the Timeout property
* The EOI line has been asserted

An error event will be generated if readasync terminates due to a timeout.

Asynchronous Read Properties
Transfer Status

The TransferStatus property indicates what type of asynchronous operation is in
progress. For VISA-GPIB objects, TransferStatus can be configured as read, write,
or idle.

v.TransferStatus
ans =
idle

While an asynchronous read is in progress, an error occurs if you execute another write
or asynchronous read operation. You can stop the asynchronous read operation with the
stopasync function. The data in the input buffer will remain after stopasync is called.
This allows you to bring the data that was read into the MATLAB workspace with one of
the synchronous read routines (Fscanf, fgetl, fgets, or fread).

Asynchronous Read and Write Operations Using VISA

BytesAvailable

If we now look at the BytesAvai lable property, you see that 6 bytes were read.
Vv.BytesAvailable

ans =
6

You can bring the data into the MATLAB workspace with the fscanf function.

data
data

fscanf(v, "%g")

Ll ||

Using Callbacks During an Asynchronous Read

Now, configure the VISA-GPIB object to notify you when a line feed has been read.
The BytesAvai lableFcnMode property controls when the BytesAvai lable event
is created. By default, the BytesAvai lable event is created when the EOSCharCode
character is received. The BytesAvailable event can also be created after a certain
number of bytes have been read. Note that the BytesAvai lableFcnMode property
cannot be configured while the object is connected to the instrument.

set(v, "BytesAvailableFcn®, {"dispcallback"});
set(v, "EOSCharCode®, 10);

The callback function dispcal Iback displays a message containing the type of the
event, the name of the object that caused the event to occur, and the time the event
occurred.

Now, query the instrument for the frequency of the signal. Once the linefeed has been
read from the instrument and placed in the input buffer, dispcal Iback will be executed
and a message will be displayed to the MATLAB command window indicating that a
BytesAvai lable event occurred.

fprintf(v, "CH2:Scale?");
readasync(Vv);

Allow time for a response. In a typical application this is where you could do other tasks.
pause(0.5);

A BytesAvailable event occurred for VISA-GPIB0O-2 at 01-Jun-2005 15:08:34.

5-61

5 Controlling Instruments Using VISA

5-62

v_BytesAvailable

ans =
6
data = fscanf(v, "%c", 6)
data =
a (o

Note that the last value read is the line feed (10):

real (data)
ans =

224 32 40 16 48 10

Writing Data Asynchronously

You can perform an asynchronous write with the fprintf or fwrite functions by
passing an "async” flag as the last input argument.

While an asynchronous write is in progress, an error occurs if you execute a read or write
operation. You can stop an asynchronous write operation with the stopasync function.
The data remaining in the output buffer will be flushed.

Also configure the object to notify you when the write operation has completed by
defining an asynchronous write callback.

set(v, "OutputEmptyFcn®, {"dispcallback"});
fprintf(v, "CHl:Scale?", "async®);

Cleanup

If you are finished with the VISA-GPIB object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(Vv);
delete(Vv);

Asynchronous Read and Write Operations Using VISA

clear v

5-63

Controlling Instruments Using the

Serial Port

This chapter describes specific issues related to controlling instruments that use the

serial port.

“Serial Port Overview” on page 6-2

“Serial Port Object” on page 6-15

“Configuring Communication Settings” on page 6-19
“Writing and Reading Data” on page 6-20

“Events and Callbacks” on page 6-36

“Using Control Pins” on page 6-41

6 Controlling Instruments Using the Serial Port

Serial Port Overview

In this section...

“What Is Serial Communication?” on page 6-2

“Serial Port Interface Standard” on page 6-2

“Supported Platforms” on page 6-3

“Connecting Two Devices with a Serial Cable” on page 6-3
“Serial Port Signals and Pin Assignments” on page 6-4

“Serial Data Format” on page 6-8

“Finding Serial Port Information for Your Platform” on page 6-11

What Is Serial Communication?

Serial communication is the most common low-level protocol for communicating between
two or more devices. Normally, one device is a computer, while the other device can be a

modem, a printer, another computer, or a scientific instrument such as an oscilloscope or
a function generator.

As the name suggests, the serial port sends and receives bytes of information in a serial
fashion — one bit at a time. These bytes are transmitted using either a binary format or
a text (ASCII) format.

For many serial port applications, you can communicate with your instrument without
detailed knowledge of how the serial port works. Communication is established through a
serial port object, which you create in the MATLAB workspace.

If your application is straightforward, or if you are already familiar with the topics
mentioned above, you might want to begin with “Serial Port Object” on page 6-15.

If you want a high-level description of all the steps you are likely to take when
communicating with your instrument, refer to the Getting Started documentation that is
linked to at the top of the main Instrument Control Toolbox Doc Center page.

Serial Port Interface Standard

Over the years, several serial port interface standards for connecting computers to
peripheral devices have been developed. These standards include RS-232, RS-422, and
RS-485 — all of which are supported by the serial port object. Of these, the most widely
used standard is RS-232, which stands for Recommended Standard number 232.

Serial Port Overview

The current version of this standard is designated as TIA/EIA-232C, which is published
by the Telecommunications Industry Association. However, the term “RS-232” is still in
popular use, and is used in this guide when referring to a serial communication port that
follows the TIA/EIA-232 standard. RS-232 defines these serial port characteristics:

+ The maximum bit transfer rate and cable length

+ The names, electrical characteristics, and functions of signals
* The mechanical connections and pin assignments
Primary communication is accomplished using three pins: the Transmit Data pin, the

Receive Data pin, and the Ground pin. Other pins are available for data flow control, but
are not required.

Note In this guide, it is assumed you are using the RS-232 standard. Refer to your device
documentation to see which interface standard you can use.

Supported Platforms

The MATLAB serial port interface is supported on
Linux® 64-bit

* Mac OS X 64-bit
Microsoft® Windows 64-bit

Connecting Two Devices with a Serial Cable

The RS-232 and RS-485 standard defines the two devices connected with a serial cable as
the Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE).
This terminology reflects the RS-232 origin as a standard for communication between a
computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral devices such
as modems and printers are considered DCEs. Note that many scientific instruments
function as DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin assignments are
defined such that straight-through cabling is used, where pin 1 is connected to pin 1, pin
2 is connected to pin 2, and so on. A DTE to DCE serial connection using the transmit

6-3

6 Controlling Instruments Using the Serial Port

6-4

data (TD) pin and the receive data (RD) pin is shown below. Refer to “Serial Port Signals
and Pin Assignments” on page 6-4 for more information about serial port pins.

Computer Instrument
TD RD
Pin3 | Pin 3
DTE DCE
Pin 2 |w Pin 2
RD TD

If you connect two DTEs or two DCEs using a straight serial cable, then the TD pin on
each device 1s connected to the other, and the RD pin on each device is connected to the
other. Therefore, to connect two like devices, you must use a null modem cable. As shown
below, null modem cables cross the transmit and receive lines in the cable.

Computer Computer
TD TD
Pin3 Pin 3
DTE >< DTE
Pin 2 |« »Pin2
RD RD

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If you have an
RS-232/RS-485 adaptor, then you can use the serial port object with these devices.

Serial Port Signals and Pin Assignments

Serial ports consist of two signal types: data signals and control signals. To support

these signal types, as well as the signal ground, the RS-232 standard defines a 25-pin
connection. However, most PCs and UNIX" platforms use a 9-pin connection. In fact, only
three pins are required for serial port communications: one for receiving data, one for
transmitting data, and one for the signal ground.

The pin assignment scheme for a 9-pin male connector on a DTE is given below.

1 2 3 4 5
O o O O 0O

O O O O
6 7 8 9

Serial Port Overview

The pins and signals associated with the 9-pin connector are described below. Refer to
the RS-232 or the RS-485 standard for a description of the signals and pin assignments

used for a 25-pin connector.

Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type
1 CD Carrier Detect Control

2 RD Received Data Data

3 TD Transmitted Data Data

4 DTR Data Terminal Ready Control

5 GND Signal Ground Ground

6 DSR Data Set Ready Control

7 RTS Request to Send Control

8 CTS Clear to Send Control

9 RI Ring Indicator Control

The term “data set” is synonymous with “modem” or “device,” while the term “data
terminal” is synonymous with “computer.”

Note The serial port pin and signal assignments are with respect to the DTE. For
example, data is transmitted from the TD pin of the DTE to the RD pin of the DCE.

Signal States

Signals can be in either an active state or an inactive state. An active state corresponds to
the binary value 1, while an inactive state corresponds to the binary value 0. An active
signal state is often described as logic I, on, true, or a mark. An inactive signal state is
often described as logic 0, off, false, or a space.

For data signals, the “on” state occurs when the received signal voltage is more negative
than -3 volts, while the “off” state occurs for voltages more positive than 3 volts. For
control signals, the “on” state occurs when the received signal voltage is more positive
than 3 volts, while the “off” state occurs for voltages more negative than -3 volts. The
voltage between -3 volts and +3 volts is considered a transition region, and the signal

state is undefined.

6-5

6 Controlling Instruments Using the Serial Port

To bring the signal to the “on” state, the controlling device unasserts (or lowers) the
value for data pins and asserts (or raises) the value for control pins. Conversely, to bring
the signal to the “off” state, the controlling device asserts the value for data pins and
unasserts the value for control pins.

The “on” and “off” states for a data signal and for a control signal are shown below.

Data Signal Control Signal

6
w off on
5/ 83 - - - - - 0 _ _ _ _ _ _ _ _ - _
c
Q
g . _ _ -
s 0r | L | |
I
Z s
%n on off

6 |

The Data Pins

Most serial port devices support full-duplex communication meaning that they can send
and receive data at the same time. Therefore, separate pins are used for transmitting
and receiving data. For these devices, the TD, RD, and GND pins are used. However,
some types of serial port devices support only one-way or half-duplex communications.
For these devices, only the TD and GND pins are used. In this guide, it is assumed that a
full-duplex serial port is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries data that is
received by a DTE from a DCE.

The Control Pins

The control pins of a 9-pin serial port are used to determine the presence of connected
devices and control the flow of data. The control pins include

* “The RTS and CTS Pins” on page 6-7
* “The DTR and DSR Pins” on page 6-7

Serial Port Overview

* “The CD and RI Pins” on page 6-7
The RTS and CTS Pins

The RTS and CTS pins are used to signal whether the devices are ready to send or
receive data. This type of data flow control — called hardware handshaking — is used
to prevent data loss during transmission. When enabled for both the DTE and DCE,
hardware handshaking using RTS and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive data.

2 The DCE asserts the CTS pin indicating that it is clear to send data over the TD pin.
If data can no longer be sent, the CTS pin is unasserted.

3 The data is transmitted to the DTE over the TD pin. If data can no longer be
accepted, the RTS pin is unasserted by the DTE and the data transmission is
stopped.

To enable hardware handshaking, refer to “Controlling the Flow of Data: Handshaking”
on page 6-44.

The DTR and DSR Pins

Many devices use the DSR and DTR pins to signal if they are connected and powered.
Signaling the presence of connected devices using DTR and DSR follows these steps:

1 The DTE asserts the DTR pin to request that the DCE connect to the communication
line.

2 The DCE asserts the DSR pin to indicate that it is connected.

3 DCE unasserts the DSR pin when it is disconnected from the communication line.

The DTR and DSR pins were originally designed to provide an alternative method of
hardware handshaking. However, the RTS and CTS pins are usually used in this way,
and not the DSR and DTR pins. However, you should refer to your device documentation
to determine its specific pin behavior.

The CD and RI Pins

The CD and RI pins are typically used to indicate the presence of certain signals during
modem-modem connections.

CD 1s used by a modem to signal that it has made a connection with another modem,
or has detected a carrier tone. CD is asserted when the DCE is receiving a signal of a
suitable frequency. CD is unasserted if the DCE is not receiving a suitable signal.

6-7

6 Controlling Instruments Using the Serial Port

6-8

RI is used to indicate the presence of an audible ringing signal. RI is asserted when the
DCE is receiving a ringing signal. RI is unasserted when the DCE is not receiving a
ringing signal (for example, it's between rings).

Serial Data Format

The serial data format includes one start bit, between five and eight data bits, and one
stop bit. A parity bit and an additional stop bit might be included in the format as well.
The diagram below illustrates the serial data format.

I I | ‘ _'_1

Start bit Data bits Parity bit Stop bits

The format for serial port data is often expressed using the following notation:
number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop bit, while
7-E-2 is interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually represent an
ASCII character. The remaining bits are called framing bits because they frame the data
bits.

Bytes Versus Values

The collection of bits that compose the serial data format is called a byte. At first, this
term might seem inaccurate because a byte is 8 bits and the serial data format can range
between 7 bits and 12 bits. However, when serial data is stored on your computer, the
framing bits are stripped away, and only the data bits are retained. Moreover, eight data
bits are always used regardless of the number of data bits specified for transmission,
with the unused bits assigned a value of 0.

When reading or writing data, you might need to specify a value, which can consist of one
or more bytes. For example, if you read one value from a device using the int32 format,
then that value consists of four bytes. For more information about reading and writing
values, refer to “Writing and Reading Data” on page 6-20.

Serial Port Overview

Synchronous and Asynchronous Communication

The RS-232 and the RS-485 standard support two types of communication protocols:
synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a common

clock signal. The two devices initially synchronize themselves to each other, and then
continually send characters to stay synchronized. Even when actual data is not really
being sent, a constant flow of bits allows each device to know where the other is at

any given time. That is, each bit that is sent is either actual data or an idle character.
Synchronous communications allows faster data transfer rates than asynchronous
methods, because additional bits to mark the beginning and end of each data byte are not
required.

Using the asynchronous protocol, each device uses its own internal clock resulting in
bytes that are transferred at arbitrary times. So, instead of using time as a way to
synchronize the bits, the data format is used.

In particular, the data transmission is synchronized using the start bit of the word,

while one or more stop bits indicate the end of the word. The requirement to send

these additional bits causes asynchronous communications to be slightly slower than
synchronous. However, it has the advantage that the processor does not have to deal with
the additional idle characters. Most serial ports operate asynchronously.

Note When used in this guide, the terms “synchronous” and “asynchronous” refer to
whether read or write operations block access to the MATLAB Command Window.

How Are the Bits Transmitted?

By definition, serial data is transmitted one bit at a time. The order in which the bits are
transmitted follows these steps:

1 The start bit is transmitted with a value of 0.

2 The data bits are transmitted. The first data bit corresponds to the least significant
bit (LSB), while the last data bit corresponds to the most significant bit (MSB).

3 The parity bit (if defined) is transmitted.

4 One or two stop bits are transmitted, each with a value of 1.

The number of bits transferred per second is given by the baud rate. The transferred bits
include the start bit, the data bits, the parity bit (if defined), and the stop bits.

6 Controlling Instruments Using the Serial Port

6-10

Start and Stop Bits

As described in “Synchronous and Asynchronous Communication” on page 6-9,

most serial ports operate asynchronously. This means that the transmitted byte must be
identified by start and stop bits. The start bit indicates when the data byte is about to
begin and the stop bit(s) indicates when the data byte has been transferred. The process
of identifying bytes with the serial data format follows these steps:

1 When a serial port pin is idle (not transmitting data), then it is in an “on” state.

2 When data is about to be transmitted, the serial port pin switches to an “off” state
due to the start bit.

3 The serial port pin switches back to an “on” state due to the stop bit(s). This
indicates the end of the byte.

Data Bits

The data bits transferred through a serial port might represent device commands, sensor
readings, error messages, and so on. The data can be transferred as either binary data or
as text (ASCII) data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits or eight
bits. If the data is based on the ASCII character set, then a minimum of seven bits is

required because there are 27 or 128 distinct characters. If an eighth bit is used, it must
have a value of 0. If the data is based on the extended ASCII character set, then eight

bits must be used because there are 2% or 256 distinct characters.

The Parity Bit

The parity bit provides simple error (parity) checking for the transmitted data. The types
of parity checking are given below.

Parity Types

Parity Type Description

Even The data bits plus the parity bit produce an even number of 1s.
Mark The parity bit is always 1.

Odd The data bits plus the parity bit produce an odd number of 1s.
Space The parity bit is always 0.

Serial Port Overview

Mark and space parity checking are seldom used because they offer minimal error
detection. You might choose not to use parity checking at all.

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1 depending on the data bit
values and the type of parity checking selected.

2 The receiving device checks if the parity bit is consistent with the transmitted data.
If it is, then the data bits are accepted. If it is not, then an error is returned.

Note Parity checking can detect only 1 bit errors. Multiple-bit errors can appear as valid
data.

For example, suppose the data bits 01110001 are transmitted to your computer. If even
parity is selected, then the parity bit is set to 0 by the transmitting device to produce
an even number of 1s. If odd parity is selected, then the parity bit is set to 1 by the
transmitting device to produce an odd number of 1s.

Finding Serial Port Information for Your Platform

This section describes how to find serial port information using the resources provided by
Windows and UNIX platforms.

Note Your operating system provides default values for all serial port settings. However,
these settings are overridden by your MATLAB code, and will have no effect on your
serial port application.

You can also use the instrhwinfo function to return the available serial ports
programmatically.

Use the serial list Function to Find Available Ports

The seriallist function returns a list of all serial ports on a system. The list includes
virtual serial ports provided by USB-to-serial devices and Bluetooth Serial Port Profile
devices. This provides a list of the serial ports that you have access to on your computer
and could use for serial port communication. For example:

seriallist

6-11

6 Controlling Instruments Using the Serial Port

6-12

ans =
1x2 string array

''"com1™ "'CoM3™

Note: On Linux systems, the seriallist function does not show ports that are in use.
On Windows and Mac systems, it shows both available and in-use ports. But on Linux it
shows only available ports.

Windows Platform

You can access serial port information through the System Properties dialog box. To
access this in Window XP,

Right-click My Computer on the desktop, and select Properties.
In the System Properties dialog box, click the Hardware tab.
Click Device Manager.

In the Device Manager dialog box, expand the Ports node.
Double-click the Communications Port (COM1) node.

Select the Port Settings tab.

ocCUbhwWN—

The resulting Ports dialog box is shown below.

Serial Port Overview

Communications Port [COM1) Properties 7| x|

General Port Settings |Driver I Detailsl Flesourcesl

Bits per second:
Diata bits: m

Farity: lﬁ
Stap bits: lﬁ

Flow contral: I Hardware hal l

Advanced. | Restare Defaults |

Cancel |

UNIX Platform

To find serial port information for UNIX platforms, you need to know the serial port

names. These names might vary between different operating systems.

On Linux, serial port devices are typically named ttySO, ttyS1, and so on. You can use
the setserial command to display or configure serial port information. For example, to

display which serial ports are available,
setserial -bg /dev/ttyS*

/dev/ttySO at 0x03f8 (irg = 4) is a 16550A
/dev/ttyS1l at 0x02f8 (irg = 3) is a 16550A

To display detailed information about ttySO0,

setserial -ag /dev/ttySO

/dev/ttyS0O, Line 0, UART: 16550A, Port: 0Ox03f8, IRQ:
Baud_base: 115200, close_delay: 50, divisor:

closing_wait: 3000, closing wait2: infinte
Flags: spd_normal skip_test session_lockout

6-13

6 Controlling Instruments Using the Serial Port

Note If the setserial -ag command does not work, make sure that you have read and
write permission for the port.

For all supported UNIX platforms, including Mac OS X, you can use the stty command
to display or configure serial port information. For example, to display serial port
properties for ttySO0, type:

stty -a < /dev/ttySO
To configure the baud rate to 4800 bits per second, type:

stty speed 4800 < /dev/ttySO > /dev/ttySO

Note: This is an example of setting tty parameters, not the baud rate. To set baud rate
using MATLAB serial interface refer to “Configuring Communication Settings” on page
6-19.

6-14

Serial Port Object

Serial Port Object

In this section...

“Creating a Serial Port Object” on page 6-15

“Serial Port Object Display” on page 6-17

Creating a Serial Port Object

You create a serial port object with the serial function. serial requires the name
of the serial port connected to your device as an input argument. As described in
“Configuring Properties During Object Creation” on page 3-3, you can also configure
property values during object creation.

Each serial port object is associated with one serial port. For example, to create a serial
port object associated with a serial port enter

s = serial("port™);

This creates a serial port object associated with the serial port specified by 'port'. If
‘port' does not exist, or if it is in use, you will not be able to connect the serial port
object to the device. 'port' object name will depend upon the platform that the serial
port is on.

instrhwinfo("serial ™)
provides a list of available serial ports.

You can also use the serial list function to return a list of all serial ports on a system.
The list includes virtual serial ports provided by USB-to-serial devices and Bluetooth
Serial Port Profile devices. This provides a list of the serial ports that you have access to
on your computer and could use for serial port communication. For example:

seriallist

ans =
1x2 string array
"'"comM1* "'COM3™

This table shows an example of serial constructors on different platforms:

6-15

6 Controlling Instruments Using the Serial Port

Platform Serial Constructor

Linux 32 and 64-bit serial ("/dev/ttyS0");

Mac OS X serial ("/dev/tty._KeySeriall®);
and Mac OS X 64-bit

Microsoft Windows 32 and 64-bit serial("coml™);

The serial port object S now exists in the MATLAB workspace. You can display the class
of s with the whos command.

whos s
Name Size Bytes Class
S 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Note: The first time you try to access a serial port in MATLAB using the s =
serial("coml®) call, make sure that the port is free and is not already open in any
other application. If the port is open in another application, MATLAB cannot access it.
Once you have accessed in MATLAB, you can open the same port in other applications
and MATLAB will continue to use it along with any other application that has it open as
well.

Once the serial port object is created, the following properties are automatically assigned
values. These general purpose properties provide information about the serial port object
based on the object type and the serial port.

Serial Port Descriptive Properties

Property Name Description

Name Specify a descriptive name for the serial port object.
Port Indicate the platform-specific serial port name.
Type Indicate the object type.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose

6-16

Serial Port Object

a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

You can display the values of these properties for s
s.Name

ans =
"Serial-CoM1*

s.Port

ans =
"comMm1*

s.Type

ans =
"serial”

Caution: The serial port is not locked by the MATLAB application, so other applications
or other instances of the MATLAB Command Window can access the same serial port.
This might result in a conflict, with unpredictable results.

Serial Port Object Display

The serial port object provides a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

+ Type the serial port object variable name at the command line.
+ Exclude the semicolon when creating a serial port object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the serial port object S on a Windows machine is given here.

s = serial("COM1*™)

6-17

6 Controlling Instruments Using the Serial Port

6-18

Serial Port Object : Serial-COM1

Communication Settings
Port:
BaudRate:
Terminator:

Communication State
Status:
RecordStatus:

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

CcoM1
9600
"LE"

closed
off

dle

i
0
0
0

Configuring Communication Settings

Configuring Communication Settings

Before you can write or read data, both the serial port object and the instrument must
have identical communication settings. Configuring serial port communications involves
specifying values for properties that control the baud rate and the “Serial Data Format”
on page 6-8. These properties are as follows.

Serial Port Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted.

DataBits Specify the number of data bits to transmit.

Parity Specify the type of parity checking.

StopBits Specify the number of bits used to indicate the end of a byte.
Terminator Specify the terminator character.

Caution: If the serial port object and the instrument communication settings are not
identical, you cannot successfully read or write data.

Refer to your instrument documentation for an explanation of its supported
communication settings.

You can display the communication property values for the serial port object s created in
“Serial Port Object” on page 6-15 .

get(s,{"BaudRate”, "DataBits”","Parity”, "StopBits”", "Terminator"})

ans =
[9600] [8] *none" [1] "LF"

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

6-19

6 Controlling Instruments Using the Serial Port

Writing and Reading Data

In this section...

“Asynchronous Write and Read Operations” on page 6-20
“Rules for Completing Write and Read Operations” on page 6-26
“Writing and Reading Text Data” on page 6-27

“Writing and Reading Binary Data” on page 6-31

Asynchronous Write and Read Operations

These functions are associated with reading and writing text asynchronously:

Function Purpose

fprintf Write text to an instrument.

readasync Asynchronously read bytes from an instrument.
stopasync Stop an asynchronous read or write operation.

These properties are associated with reading and writing text asynchronously:

Property Purpose

BytesAvailable Indicates the number of bytes available in the input buffer.

TransferStatus Indicates what type of asynchronous operation is in progress.

ReadAsyncMode Indicates whether data is read continuously in the background
or whether you must call the readasync function to read data
asynchronously.

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Asynchronous write and read operations do not block access to the MATLAB Command
Window. Additionally, while an asynchronous operation is in progress you can

+ Execute a read (write) operation while an asynchronous write (read) operation is in
progress. This is because serial ports have separate pins for reading and writing.

+ Make use of all supported callback properties. Refer to “Events and Callbacks” on
page 6-36 for more information about the callback properties supported by serial
port objects.

6-20

Writing and Reading Data

The process of writing data asynchronously is given in “Synchronous Versus
Asynchronous Write Operations” on page 3-18.

For a general overview about writing and reading data, as well as a list of all associated
functions and properties, refer to “Communicating with Your Instrument” on page 2-8.

Asynchronous Read Operations

For serial port objects, you specify whether read operations are synchronous or
asynchronous with the ReadAsyncMode property. You can configure ReadAsyncMode to
continuous or manual.

If ReadAsyncMode is continuous (the default value), the serial port object continuously
queries the instrument to determine if data is available to be read. If data i1s available, it
is asynchronously stored in the input buffer. To transfer the data from the input buffer
to the MATLAB workspace, you use one of the synchronous (blocking) read functions
such as Fgetl, fgets, fscanf, or fread. If data is available in the input buffer, these
functions will return quickly.

Note: This example is Windows specific.

s = serial("COM1™);
fopen(s)
s.ReadAsyncMode = "continuous®;
fprintf(s, "*IDN?")
s.BytesAvailable
ans =
56
out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously query the
instrument to determine if data is available to be read. To read data asynchronously,
you use the readasync function. You then use one of the synchronous read functions to
transfer data from the input buffer to the MATLAB workspace.

s.ReadAsyncMode = "manual*;
fprintf(s, "*IDN?")
s.BytesAvailable
ans =

0
readasync(s)

6-21

6 Controlling Instruments Using the Serial Port

6-22

s.BytesAvailable
ans =

56
out = fscanf(s);

Writing and Reading Asynchronous Data

This example explores asynchronous read and write operations using a serial port object.
The instrument used was a Tektronix(R) TDS 210 oscilloscope.

To begin, create a serial port object associated with the COM1 port. The oscilloscope is
configured to a baud rate of 9600, 1 stop bit, a line feed terminator, no parity, and no flow
control.

= serial("COM1™);
.Baudrate=9600;
.StopBits=1;
.Terminator="LF";
-Parity="none";
-.FlowControl="none";

nououonnonon

Before you can perform a read or write operation, you must connect the serial port object
to the instrument with the fopen function.

fopen(s);

If the object was successfully connected, its Status property is automatically configured
to open.

s.Status

ans =
open

To begin, read data continuously.

s.ReadAsyncMode="continuous”;

Now, query the instrument for the peak-to-peak value of the signal on channel 1.
fprintf(s, "Measurement:Measl:Source CH1%);

fprintf(s, "Measurement:Measl:Type Pk2Pk™);

fprintf(s, "Measurement:Measl:Value?");

Allow time for a response. In a typical application this is where you could do other tasks.

Writing and Reading Data

pause(0.5);

Since the ReadAsyncMode property is set to continuous, the object is continuously
asking the instrument if any data is available. Once the last fprintf function
completes, the instrument begins sending data; the data is read from the instrument and
is stored in the input buffer.

s.BytesAvailable

ans =
14

You can bring the data from the object's input buffer into the MATLAB workspace with
fscant.

data = fscanf(s)

data =
5.99999987E-2

Next, read the data manually.

s.ReadAsyncMode="manual " ;

Now, query the instrument for the frequency of the signal on channel 1.

fprintf(s, "Measurement:Meas2:Source CH1%);
fprintf(s, "Measurement:Meas2:Type Freq®);
fprintf(s, "Measurement:Meas2:Value?");

Allow time for a response. In a typical application this is where you could do other tasks.
pause(0.5);

Once the last Fprintf function completes, the instrument begins sending data.
However, since ReadAsyncMode is set to manual, the object is not reading the data being
sent from the instrument. Therefore, no data is being read and placed in the input buffer.

s.BytesAvailable

ans =
0

Read the data.

readasync(s);

6-23

6 Controlling Instruments Using the Serial Port

6-24

Allow time for a response.
pause(0.5);

It is important to remember that when the serial port object is in manual mode

(the ReadAsyncMode property is configured to manual), data that is sent from the
instrument to the computer is not automatically stored in the input buffer of the
connected serial port object. Data is not stored until readasync or one of the blocking
read functions is called.

Manual mode should be used when a stream of data is being sent from your instrument
and you only want to capture portions of the data.

Defining an Asynchronous Read Callback

Continuing the example from the previous section, configure the serial object to notify
you when a terminator has been read.

s.ReadAsyncMode="continuous”;
s.BytesAvailableFcn={"dispcal lback"};

Note, the default value for the BytesAvai lableFcnMode property indicates that the
callback function defined by the BytesAvai lableFcn property will be executed when
the terminator has been read.

s.BytesAvailableFcnMode

ans =
terminator

The dispcal lback function displays a message containing the type of the event, the
name of the object that caused the event to occur, and the time the event occurred.

callbackTime = datestr(datenum(event.Data.AbsTime));
fprintf(["A " event.Type " event occurred for " obj.Name " at *
callbackTime ".\n"]);

Query the instrument for the period of the signal on channel 1. Once the terminator
is read from the instrument and placed in the input buffer, dispcal Iback is
executed and a message is posted to the MATLAB command window indicating that a
BytesAvailable event occurred.

fprintf(s, “Measurement:Meas3:Source CH1%)
fprintf(s, “Measurement:Meas3:Type Period®)
fprintf(s, “Measurement:Meas3:Value?")

Writing and Reading Data

Allow time for a response.

pause(0.5);

A BytesAvailable event occurred for Serial-COM1 at <date and time>.
s.BytesAvailable

ans =
7

data = fscanf(s, "%c", 10)

data

2.0E-6
Note that the last value read is the line feed (10).

Now suppose that halfway through the asynchronous read operation, you realize
that the signal displayed on the oscilloscope was incorrect. Rather than waiting for
the asynchronous operation to complete, you can use the stopasync function to
stop the asynchronous read. Note that if an asynchronous write was in progress, the
asynchronous write operation would also be stopped.

s.BytesAvailableFcn="";
fprintf(s, "Curve?");
pause(0.25);
S.BytesAvailable

ans =
126

stopasync(s);
s.BytesAvailable

ans =
262

The data that has been read from the instrument remains in the input buffer. You
can use one of the synchronous read functions to bring this data into the MATLAB
workspace. However, since this data represents the wrong signal, the Flushinput
function is called to remove all data from the input buffer.

6-25

6 Controlling Instruments Using the Serial Port

6-26

Flushinput(s);
s.BytesAvailable

ans =
0

You can perform an asynchronous write with the fprintf or fwrite functions by
passing "async” as the last input argument.

fprintf(s, "Measurement:Meas3:Value?", "async®)

If you are finished with the serial port object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(s);
delete(s);
clear s

Rules for Completing Write and Read Operations

The rules for completing synchronous and asynchronous read and write operations are
described below.

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these conditions is
satisfied:

* The specified data is written.

+ The time specified by the Timeout property passes.

In addition to these rules, you can stop an asynchronous write operation at any time with
the stopasync function.

A text command is processed by the instrument only when it receives the required
terminator. For serial port objects, each occurrence of \n in the ASCII command is
replaced with the Terminator property value. Because the default format for fprintf
1s %s\n, all commands written to the instrument will end with the Terminator value.
The default value of Terminator is the line feed character. The terminator required by
your instrument will be described in its documentation.

Writing and Reading Data

Completing Read Operations

A read operation with fgetl, fgets, fscanT, or readasync completes when one of
these conditions is satisfied:

* The terminator specified by the Terminator property is read.
+ The time specified by the Timeout property passes.
* The input buffer is filled.

* The specified number of values is read (Fscanf and readasync only).

A read operation with fread completes when one of these conditions is satisfied:

+ The time specified by the Timeout property passes.

* The specified number of values is read.

Note: Set the terminator property to * (null), if appropriate, to ensure efficient
throughput of binary data.

In addition to these rules, you can stop an asynchronous read operation at any time with
the stopasync function.

Writing and Reading Text Data

This example illustrates how to communicate with a serial port instrument by writing
and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to the
serial port COM1. Therefore, many of the commands given below are specific to this
instrument. A sine wave is input into channel 2 of the oscilloscope, and your job is to
measure the peak-to-peak voltage of the input signal.

These functions are used when reading and writing text:

Function Purpose
fprintf Write text to an instrument.
fscanf Read data from an instrument and format as text.

6-27

6 Controlling Instruments Using the Serial Port

These properties are associated with reading and writing text:

Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.

ValuesSent Specifies the total number of values sent to the instrument.

InputBufferSize |[Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

Terminator Character used to terminate commands sent to the instrument.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Note: This example is Windows specific.

1 Create a serial port object — Create the serial port object s associated with serial
port COM1.

s = serial("COM1™);

2 Connect to the instrument — Connect s to the oscilloscope. Because the default
value for the ReadAsyncMode property is continuous, data is asynchronously
returned to the input buffer as soon as it is available from the instrument.

fopen(s)
3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using Fscanf.

fprintf(s, "*IDN?")
s.BytesAvailable
ans =
56
idn = fscanf(s)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

6-28

Writing and Reading Data

You need to determine the measurement source. Possible measurement sources
include channel 1 and channel 2 of the oscilloscope.

fprintf(s, "MEASUREMENT : IMMED : SOURCE?*")
source = fscanf(s)

source =

CH1

The scope is configured to return a measurement from channel 1. Because the input
signal is connected to channel 2, you must configure the instrument to return a
measurement from this channel.

fprintf(s, "MEASUREMENT : IMMED: SOURCE CH2")
fprintf(s, "MEASUREMENT : IMMED : SOURCE?")
source = fscanf(s)

source
CH2

You can now configure the scope to return the peak-to-peak voltage, and then
request the value of this measurement.

fprintf(s, "MEASUREMENT :MEAS1:TYPE PK2PK®)
fprintf(s, "MEASUREMENT :MEAS1:VALUE?")

Transfer data from the input buffer to the MATLAB workspace using fscant.

ptop = fscanf(s)

ptop =
2.0199999809E0

4 Disconnect and clean up — When you no longer need s, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(s)
delete(s)
clear s

Usage Notes for Writing ASCII Data

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

+ All the data is written
+ A timeout occurs as specified by the Timeout property

6-29

6 Controlling Instruments Using the Serial Port

By default the fprintf function writes ASCII data using the %s\n format. All
occurrences of \n in the command being written to the instrument are replaced with
the Terminator property value. When using the default format, %s\n, all commands
written to the instrument will end with the Terminator character.

For the previous command, the linefeed (LF) is sent after "Hello World 123" is
written to the instrument, thereby indicating the end of the command.

You can also specify the format of the command written by providing a third input
argument to Fprintf. The accepted format conversion characters include: d, 1, o, u, x, X,
f,e, E, g, G, c, and s.

ASCII Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

s.OutputBufferSize

ans =
512

The ValuesSent property indicates the total number of values written to the instrument
since the object was connected to the instrument.

s.ValuesSent

ans =
40

Usage Notes for Reading ASCII Data

By default, the fscanf function reads data using the "%c" format and blocks the
MATLAB command line until one of the following occurs:

* The terminator is received as specified by the Terminator property

* A timeout occurs as specified by the Timeout property

* The input buffer is filled

+ The specified number of values is read

You can also specify the format of the data read by providing a second input argument to

fscanf. The accepted format conversion characters include: d, 1, o, u, x, X, f, e, E, g, G, c,
and s.

6-30

Writing and Reading Data

ASCII Read Properties

The InputBufferSize property specifies the maximum number of bytes you can read
from the instrument. By default, InputBufferSize is 512.

s. InputBufferSize

ans =
512

The ValuesReceived property indicates the total number of values read from the
instrument, including the terminator.

s.ValuesReceived

ans =
6

Writing and Reading Binary Data

This example explores binary read and write operations with a serial port object. The
instrument used was a Tektronix® TDS 210 oscilloscope.

Functions and Properties

These functions are used when reading and writing binary data:

Function Purpose
fread Read binary data from the instrument.
fwrite Write binary data to the instrument.

These properties are associated with reading and writing binary data:

Property Purpose
ValuesReceived Specifies the total number of values read from the instrument.

ValuesSent Specifies the total number of values sent to the instrument.

InputBufferSize |Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

6-31

6 Controlling Instruments Using the Serial Port

6-32

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Serial Object

You need to create a serial object. In this example, create a serial port object associated
with the COM1 port.

s = serial("COM1™);

Before you can perform a read or write operation, you must connect the serial port object
to the instrument with the fopen function.

fopen(s)

If the object was successfully connected, its Status property is automatically configured
to open.

s.Status

ans =
open

Writing Binary Data

You use the fwrite function to write binary data to the instrument. By default, the
fwrite function operates in a synchronous mode. This means that fwrite blocks the
MATLAB command line until one of the following occurs:

+ All the data is written
+ A timeout occurs as specified by the Timeout property
By default the fwrite function writes binary data using the uchar precision. However,

other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Note: When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

Writing and Reading Data

Binary Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the instrument at once. By default, OutputBufferSize is 512.

s.OutputBufferSize

ans =
512

If the command specified in fwrite contains more than 512 bytes, an error is returned
and no data is written to the instrument.

Configure the object's output buffer size to 3000. Note, the OutputBufferSize can be
configured only when the object is not connected to the instrument.

fclose(s);
s.OutputBufferSize = 3000;
fopen(s);

The ValuesSent property indicates the total number of values written to the instrument
since the object was connected to the instrument.

s.ValuesSent

ans =
581

Writing Int16 Binary Data

Write a waveform as an intl6 array.

fwrite(s, "Data:Destination RefB");
fwrite(s, "Data:Encdg SRPbinary®);
fwrite(s, "Data:Width 27);
fwrite(s, "Data:Start 17);

t = (0:499) .* 8 * pi / 500;
data = round(sin(t) * 90 + 127);
fwrite(s, "CURVE #3500%);

Note that one Intl6 value consists of two bytes. Therefore, the following command will
write 1000 bytes.

fwrite(s, data, "intl6")

6-33

6 Controlling Instruments Using the Serial Port

6-34

Reading Binary Data
You use the fread function to read binary data from the instrument.
The fread function blocks the MATLAB command line until one of the following occurs:

* A timeout occurs as specified by the Timeout property

* The specified number of values is read
* The input buffer is filled

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note: When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

Binary Read Properties

The InputBufferSize property specifies the maximum number of bytes that can be
read from the instrument at once. By default, InputBufferSize is 512.

s. InputBufferSize

ans =
512

The ValuesReceived property indicates the total number of values read from the
instrument.

s.ValuesReceived

ans =
256

Reading int16 Binary Data

Read the same waveform on channel 1 as an intl6 array.

fread(s, "Data:Source CH1");

Writing and Reading Data

fread(s, "Data:Encdg SRPbinary®);
fread(s, “Data:Width 2%);
fread(s, "Data:Start 1%);
fread(s, "Data:Stop 2500%);
fread(s, “Curve?”)

Note that one intl6 value consists of two bytes. Therefore, the following command will
read 512 bytes.

data = fread(s, 256, "intl6"):
Cleanup

If you are finished with the serial port object, disconnect it from the instrument, remove
it from memory, and remove it from the workspace.

fclose(s)
delete(s)
clear s

6-35

6 Controlling Instruments Using the Serial Port

Events and Callbacks

6-36

In this section...

“Event Types and Callback Properties” on page 6-36
“Responding To Event Information” on page 6-37
“Using Events and Callbacks” on page 6-39

Event Types and Callback Properties

The event types and associated callback properties supported by serial port objects are
listed below.

Serial Port Event Types and Callback Properties

Event Type Associated Properties
Break interrupt BreaklInterruptFcn
Bytes available BytesAvailableFcn

BytesAvai lableFcnCount

BytesAvai lableFcnMode

Error ErrorFcn

Output empty OutputEmptyFcn

Pin status PinStatusFcn

Timer TimerFcn
TimerPeriod

The break-interrupt and pin-status events are described below. For a description of the
other event types, refer to “Event Types and Callback Properties” on page 4-30.

Note: You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvai lableFnc. The functions are limited to 127 binary characters.

Events and Callbacks

Break-Interrupt Event

A break-interrupt event is generated immediately after a break interrupt is generated by
the serial port. The serial port generates a break interrupt when the received data has
been in an inactive state longer than the transmission time for one character.

This event executes the callback function specified for the BreaklnterruptFcn
property. It can be generated for both synchronous and asynchronous read and write
operations.

Pin-Status Event

A pin-status event is generated immediately after the state (pin value) changes for the
CD, CTS, DSR, or RI pins. Refer to “Serial Port Signals and Pin Assignments” on page
6-4 for a description of these pins.

This event executes the callback function specified for the PinStatusFcn property. It
can be generated for both synchronous and asynchronous read and write operations.

Responding To Event Information

You can respond to event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The Type field
contains the event type, while the Data field contains event-specific information. As
described in “Creating and Executing Callback Functions” on page 4-32, these two fields
are associated with a structure that you define in the callback function header. Refer

to “Debugging: Recording Information to Disk” on page 17-6 to learn about storing

event information in a record file.

The event types and the values for the Type and Data fields are given below.

Serial Port Event Information

Event Type Field Field Value
Break interrupt Type Breaklnterrupt
Data.AbsTime day-month-year
hour:minute:second
Bytes available Type BytesAvailable
Data.AbsTime day-month-year

hour:minute:second

6-37

6 Controlling Instruments Using the Serial Port

6-38

Event Type Field Field Value
Error Type Error
Data.AbsTime day-month-year
hour:minute:second
Data.Message An error string
Output empty Type OutputEmpty
Data.AbsTime day-month-year
hour:minute:second
Pin status Type PinStatus
Data.AbsTime day-month-year
hour:minute:second
Data.Pin CarrierDetect,
ClearToSend,
DataSetReady, or
RingIndicator
Data.PinvValue on or off
Timer Type Timer
Data.AbsTime day-month-year

hour:minute:second

The Data field values are as follows.

Field Name Value

AbsTime AbsTime is defined for all events, and indicates the absolute
time the event occurred. The absolute time is returned using the
MATLAB Command Windowclock format.

Pin Pin is used by the pin status event to indicate if the CD, CTS, DSR,
or RI pins changed state. Refer to “Serial Port Signals and Pin
Assignments” on page 6-4 for a description of these pins.

Pinvalue PinValue is used by the pin status event to indicate the state of
the CD, CTS, DSR, or RI pins. Possible values are on or off.

Message Message is used by the error event to store the descriptive message

that is generated when an error occurs.

Events and Callbacks

Using Events and Callbacks

This example uses the callback function instrcal Iback to display event-related
information to the command line when a bytes-available event or an output-empty event
occurs:

Note: This example is Windows specific.

1 Create an instrument object — Create the serial port object s associated with
serial port COM1.

s = serial("COM1");
2 Configure properties — Configure s to execute the callback function
instrcal Iback when a bytes-available event or an output-empty event occurs.

s.BytesAvailableFcnMode = "terminator”;
s.BytesAvailableFcn = @instrcallback;
s.OutputEmptyFcn = @instrcallback;

3 Connect to the instrument — Connect s to the Tektronix TDS 210 oscilloscope.
Because the default value for the ReadAsyncMode property is continuous, data
is asynchronously returned to the input buffer as soon as it is available from the
instrument.

fopen(s)

4 Write and read data — Write the RS232? command asynchronously to the
oscilloscope. This command queries the RS-232 settings and returns the baud rate,
the software flow control setting, the hardware flow control setting, the parity type,
and the terminator.

fprintf(s, "RS2327", "async"™)

instrcal lback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are shown below.

OutputEmpty event occurred at 17:37:21 for the object:
Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:

Serial-COM1.
5 Read the data from the input buffer.

6-39

6 Controlling Instruments Using the Serial Port

6-40

out = fscanf(s)

out =
9600;0;0;NONE;LF

6 Disconnect and clean up — When you no longer need s, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(s)
delete(s)
clear s

For a general overview of events and callbacks, including how to create and execute
callback functions, refer to “Events and Callbacks” on page 4-29.

Note: You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

Using Control Pins

Using Control Pins

In this section...

“Control Pins” on page 6-41
“Signaling the Presence of Connected Devices” on page 6-41
“Controlling the Flow of Data: Handshaking” on page 6-44

Control Pins

As described in “Serial Port Signals and Pin Assignments” on page 6-4, 9-pin serial ports
include six control pins. The properties associated with the serial port control pins are as
follows:

Serial Port Control Pin Properties

Property Name Description

DataTerminalReady Specify the state of the DTR pin.

FlowControl Specify the data flow control method to use.
PinStatus Indicate the state of the CD, CTS, DSR, and RI pins.
RequestToSend Specify the state of the RTS pin.

Signaling the Presence of Connected Devices

DTESs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether a
connection is established between serial port devices. Once the connection is established,
you can begin to write or read data.

You can monitor the state of the CD, DSR, and RI pins with the PinStatus property.
You can specify or monitor the state of the DTR pin with the DataTerminalReady
property.

The following example illustrates how these pins are used when two modems are
connected to each other.

Connecting Two Modems

This example (shown on a Windows machine) connects two modems to each other via the
same computer, and illustrates how you can monitor the communication status for the

6-41

6 Controlling Instruments Using the Serial Port

6-42

computer-modem connections, and for the modem-modem connection. The first modem is
connected to COM1, while the second modem 1s connected to COM2:

1

Create the instrument objects — After the modems are powered on, the serial
port object s1 is created for the first modem, and the serial port object S2 is created
for the second modem.

sl = serial("COM1™);

s2 = serial("COM27);

Connect to the instruments — s1 and s2 are connected to the modems. Because
the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffers as soon as it is available from the
modems.

fopen(sl)
fopen(s2)

Because the default value of the DataTerminalReady property is on, the computer
(data terminal) i1s now ready to exchange data with the modems. You can verify that
the modems (data sets) are ready to communicate with the computer by examining
the value of the Data Set Ready pin using thePinStatus property.

sl.Pinstatus

ans =
CarrierDetect: "off"
ClearToSend: “on
DataSetReady: “on*
RingIndicator: "off"

The value of the DataSetReady field is on because both modems were powered on
before they were connected to the objects.

Configure properties — Both modems are configured for a baud rate of 2400 bits
per second and a carriage return (CR) terminator.

sl.BaudRate = 2400;

sl.Terminator = "CR";

s2.BaudRate = 2400;

s2.Terminator = "CR";

Write and read data — Write the atd command to the first modem. This command
puts the modem “off the hook,” which is equivalent to manually lifting a phone
receiver.

Using Control Pins

fprintf(sl, “atd")

Write the ata command to the second modem. This command puts the modem in
“answer mode,” which forces it to connect to the first modem.

fprintf(s2,"ata”)

After the two modems negotiate their connection, you can verify the connection
status by examining the value of the Carrier Detect pin using the PinStatus
property.

sl.PinStatus

ans =
CarrierDetect: "on"
ClearToSend: "on*®
DataSetReady: "on*
RinglIndicator: "off"

You can also verify the modem-modem connection by reading the descriptive
message returned by the second modem.

s2.BytesAvailable

ans =
25

out = fread(s2,25);
char(out)*

ans =
ata
CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. You can verify that the modems are
disconnected by examining the Carrier Detect pin value.

sl.DataTerminalReady = "off";
sl.PinStatus

ans =

CarrierDetect: "off"
ClearToSend: "on*

6-43

6 Controlling Instruments Using the Serial Port

6-44

DataSetReady: "on*
Ringlndicator: "off"
5 Disconnect and clean up — Disconnect the objects from the modems, and remove
the objects from memory and from the MATLAB workspace.

fclose([sl s2])
delete([sl s2])
clear sl s2

Controlling the Flow of Data: Handshaking

Data flow control or handshaking is a method used for communicating between a

DCE and a DTE to prevent data loss during transmission. For example, suppose your
computer can receive only a limited amount of data before it must be processed. As this
limit is reached, a handshaking signal is transmitted to the DCE to stop sending data.
When the computer can accept more data, another handshaking signal is transmitted to
the DCE to resume sending data.

If supported by your device, you can control data flow using one of these methods:

+ “Hardware Handshaking” on page 6-44
+ “Software Handshaking” on page 6-45

Note Although you may be able to configure your device for both hardware handshaking
and software handshaking at the same time, the Instrument Control Toolbox software
does not support this behavior.

You can specify the data flow control method with the FlowControl property. If
FlowControl is hardware, then hardware handshaking is used to control data flow. If
FlowControl is software, then software handshaking is used to control data flow. If
FlowControl is none, then no handshaking is used.

Hardware Handshaking
Hardware handshaking uses specific serial port pins to control data flow. In most cases,

these are the RTS and CTS pins. Hardware handshaking using these pins is described in
“The RTS and CTS Pins” on page 6-7.

Using Control Pins

If FlowControl is hardware, then the RTS and CTS pins are automatically managed by
the DTE and DCE. You can return the CTS pin value with the PinStatus property. You
can configure or return the RTS pin value with the RequestToSend property.

Note Some devices also use the DTR and DSR pins for handshaking. However, these
pins are typically used to indicate that the system is ready for communication, and are
not used to control data transmission. For the Instrument Control Toolbox software,
hardware handshaking always uses the RTS and CTS pins.

If your device does not use hardware handshaking in the standard way, then you
might need to manually configure the RequestToSend property. In this case, you
should configure FlowControl to none. If FlowControl is hardware, then the
RequestToSend value that you specify might not be honored. Refer to the device
documentation to determine its specific pin behavior.

Software Handshaking

Software handshaking uses specific ASCII characters to control data flow. These
characters, known as Xon and Xoff (or XON and XOFF), are described below.

Software Handshaking Characters

Character Integer Value Description
Xon 17 Resume data transmission.
Xoff 19 Pause data transmission.

When using software handshaking, the control characters are sent over the transmission
line the same way as regular data. Therefore you need only the TD, RD, and GND pins.

The main disadvantage of software handshaking is that you cannot write the Xon or
Xoff characters while numerical data is being written to the instrument. This is because
numerical data might contain a 17 or 19, which makes it impossible to distinguish
between the control characters and the data. However, you can write Xon or Xoff while
data is being asynchronously read from the instrument because you are using both the
TD and RD pins.

Using Software Handshaking

Suppose you want to use software flow control in conjunction with your serial port
application. To do this, you must configure the instrument and the serial port object

6-45

6 Controlling Instruments Using the Serial Port

for software flow control. For a serial port object s connected to a Tektronix TDS 210
oscilloscope, this configuration is accomplished with the following commands.

fprintf(s, "RS232:SOFTF ON™)
s.FlowControl = "software”;

To pause data transfer, you write the numerical value 19 (Xoff) to the instrument.
fwrite(s,19)
To resume data transfer, you write the numerical value 17 (Xon) to the instrument.

fwrite(s,17)

6-46

7

Controlling Instruments Using TCP/IP
and UDP

This chapter describes specific features related to controlling instruments that use the
TCP/IP or UDP protocols.

“TCP/TP and UDP Comparison” on page 7-2

“Create a TCP/IP Object” on page 7-4

“TCP/TP Communication with a Remote Host” on page 7-7
“Create a UDP Object” on page 7-10

“UDP Communication Between Two Hosts” on page 7-14

“Rules for Completing Read and Write Operations over TCP/IP and UDP” on page
7-16

“Basic Workflow to Read and Write Data over TCP/IP” on page 7-18
“Read and Write ASCII Data over TCP/IP” on page 7-21

“Read and Write Binary Data over TCP/IP” on page 7-26
“Asynchronous Read and Write Operations over TCP/IP” on page 7-32
“Basic Workflow to Read and Write Data over UDP” on page 7-38
“Read and Write ASCII Data over UDP” on page 7-40

“Read and Write Binary Data over UDP” on page 7-46

“Asynchronous Read and Write Operations over UDP” on page 7-52
“Events and Callbacks” on page 7-59

“Communicate Using TCP/IP Server Sockets” on page 7-63

7 Controlling Instruments Using TCP/IP and UDP

TCP/IP and UDP Comparison

Transmission Control Protocol (TCP or TCP/IP) and User Datagram Protocol (UDP or
UDP/IP) are both transport protocols layered on top of the Internet Protocol (IP). TCP/TP
and UDP are compared below:

7-2

Connection Versus Connectionless — TCP/IP is a connection-based protocol,
while UDP is a connectionless protocol. In TCP/IP, the two ends of the communication
link must be connected at all times during the communication. An application using
UDP prepares a packet and sends it to the receiver's address without first checking

to see if the receiver is ready to receive a packet. If the receiving end is not ready to
receive a packet, the packet is lost.

Stream Versus Packet — TCP/IP is a stream-oriented protocol, while UDP is a
packet-oriented protocol. This means that TCP/IP is considered to be a long stream of
data that is transmitted from one end of the connection to the other end, and another
long stream of data flowing in the opposite direction. The TCP/IP stack is responsible
for breaking the stream of data into packets and sending those packets while the
stack at the other end is responsible for reassembling the packets into a data stream
using information in the packet headers. UDP, on the other hand, is a packet-oriented
protocol where the application itself divides the data into packets and sends them

to the other end. The other end does not have to reassemble the data into a stream.
Note, some applications might present the data as a stream when the underlying
protocol is UDP. However, this is the layering of an additional protocol on top of UDP,
and it is not something inherent in the UDP protocol itself.

TCP/IP Is a Reliable Protocol, While UDP Is Unreliable — The packets that are
sent by TCP/IP contain a unique sequence number. The starting sequence number

is communicated to the other side at the beginning of communication. The receiver
acknowledges each packet, and the acknowledgment contains the sequence number so
that the sender knows which packet was acknowledged. This implies that any packets
lost on the way can be retransmitted (the sender would know that they did not reach
their destination because it had not received an acknowledgment). Also, packets that
arrive out of sequence can be reassembled in the proper order by the receiver.

Further, timeouts can be established because the sender knows (from the first few
packets) how long it takes on average for a packet to be sent and its acknowledgment
received. UDP, on the other hand, sends the packets and does not keep track of them.
Thus, if packets arrive out of sequence, or are lost in transmission, the receiving end
(or the sending end) has no way of knowing.

TCP/IP and UDP Comparison

Note that “unreliable” is used in the sense of “not guaranteed to succeed” as opposed
to “will fail a lot of the time.” In practice, UDP is quite reliable as long as the receiving
socket 1s active and is processing data as quickly as it arrives.

7-3

7 Controlling Instruments Using TCP/IP and UDP

Create a TCP/IP Object

7-4

In this section...
“TCP/IP Object” on page 7-4
“TCP/IP Object Display” on page 7-5

TCP/IP Object

You create a TCP/IP object with the tcpip function. tcpip requires the name of the
remote host as an input argument. In most cases, you need to specify the remote port
value. If you do not specify the remote port, then 80 is used. As described in “Configuring
Properties During Object Creation” on page 3-3, you can also configure property values
during object creation.

Each TCP/IP object is associated with one instrument. For example, to create a TCP/IP
object for a Sony/Tektronix AWG520 Arbitrary Waveform Generator,

t = tcpip(“sonytekawg.yourdomain.com®,4000);
Note that the port number is fixed and is found in the instrument's documentation.

The TCP/IP object €t now exists in the MATLAB workspace. You can display the class of t
with the whos command.

whos t
Name Size Bytes Class
t 1x1 640 tcpip object

Grand total is 16 elements using 640 bytes

Once the TCP/IP object is created, the following properties are automatically assigned
values. These general-purpose properties provide information about the TCP/IP object
based on the object type, the remote host, and the remote port.

TCP/IP Descriptive Properties

Property Name Description
Name Specify a descriptive name for the TCP/IP object.
RemoteHost Specify the remote host.

Create a TCP/IP Object

Property Name Description
RemotePort Specify the remote host port for the connection.
Type Indicate the object type.

You can display the values of these properties for t.

get(t,{"Name*, "RemoteHost", "RemotePort”, “"Type~"})
ans =
[1x31 char] [1x24 char] [4000] “tcpip”

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

TCP/IP Object Display

The TCP/IP object provides you with a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

* Type the TCP/IP object variable name at the command line.
+ Exclude the semicolon when creating a TCP/IP object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the TCP/IP object t is given below.
TCP/IP Object : TCP/IP-sonytekawg.yourdomain.com

Communication Settings

RemotePort: 4000
RemoteHost: sonytekawg.yourdomain.com
Terminator: "LF*"

Communication State
Status: closed

7 Controlling Instruments Using TCP/IP and UDP

RecordStatus: off

Read/Write State
TransferStatus: i
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

TCP/IP Communication with a Remote Host

TCP/IP Communication with a Remote Host

These are the minimum steps required to communicate with a remote host using TCP/IP.

In this example, you read a page from the RFC Editor Web site using a TCP/IP object.

1

Create and configure an instrument object — First you create a TCP/IP object
in the MATLAB workspace. Port 80 is the standard port for Web servers.

t = tepip("www.rfc-editor.org®, 80);

By default, the TCP/IP object has an InputBufferSize of 512, which means it can
only read 512 bytes at a time. The rfc-editor.org Web page data is much greater
than 512 bytes, so you need to set a larger value for this property.

t. InputBufferSize = 30000;
Connect the object — Next, you open the connection to the server. If the server is
not present or is not accepting connections you would get an error here.

fopen(t);
Write and read data — You can now communicate with the server using the
functions Fprintf, fscanf, fwrite, and fread.

To ask a Web server to send a Web page, you use the GET command. You can ask for
a text file from the RFC Editor Web site using "GET (path/filename)".

fprintf(t, "GET /rfc/rfc793.txt");

The server receives the command and sends back the Web page. You can see if any
data was sent back by looking at the BytesAvai lable property of the object.

t.BytesAvailable

Now you can start to read the Web page data. By default, fscanf reads one line at a
time. You can read lines of data until the BytesAvai lable value is 0. Note that you
will not see a rendered web page; the HTML file data will scroll by on the screen.

while (t.BytesAvailable > 0)

A = fscanf(t),
end
Disconnect and clean up — If you want to do more communication, you can
continue to read and write data here. If you are done with the object, close it and
delete it.

7-7

7 Controlling Instruments Using TCP/IP and UDP

fclose(t);
delete(t);
clear t

Server Drops the Connection

This example shows what happens when a TCP/IP object loses its connection with a
remote server. The server is a Sony/Tektronix AWG520 Arbitrary Waveform Generator
(AWG). Its address is sonytekawg.yourdomain.com and its port is 4000. The
AWG's host IP address is 192.168.1.10 and is user configurable in the instrument. The
associated host name is given by your network administrator. The port number is fixed
and is found in the instrument's documentation.

The AWG can drop the connection because it is taken off line, it is powered down, and so

on:

1

Create an instrument object — Create a TCP/IP object for the AWG.

t = tcpip("sonytekawg.yourdomain.com®, 4000);
Connect to the instrument — Connect to the remote instrument.

Ffopen(t)
Write and read data — Write a command to the instrument and read back the
result.

fprintf(t, "*IDN?*)

Ffscanf(t)

ans =

SONY/TEK,AWG520,0,SCP1:95.0 0S:2.0 USR:2.0

Assume that the server drops the connection. If you attempt to read from the
instrument, a timeout occurs and a warning is displayed.

fprintf(t, "*IDN?")
fscanf(t)

Warning: A timeout occurred before the Terminator was reached.
(Type "warning off instrument:fscanf:unsuccessfulRead" to
suppress this warning.)

ans =

At this point, the object and the instrument are still connected.

TCP/IP Communication with a Remote Host

t.Status
ans =
open

If you attempt to write to the instrument again, an error message is returned and
the connection is automatically closed.

fprintf(t, "*IDN?*)

??? Error using ==> fprintf

Connection closed by RemoteHost. Use FOPEN to connect to
RemoteHost.

Note that if the TCP/IP object is connected to the local host, the warning message
is not displayed. Instead, the error message is displayed following the next read
operation after the connection is dropped.

Disconnect and clean up — When you no longer need t, you should disconnect it
from the host, and remove it from memory and from the MATLAB workspace.

fclose(t)
delete(t)
clear t

7 Controlling Instruments Using TCP/IP and UDP

Create a UDP Object

7-10

In this section...

“UDP Object” on page 7-10
“The UDP Object Display” on page 7-12
“Enable Port Sharing over UDP” on page 7-12

UDP Object

You create a UDP object with the udp function. udp does not require the name of the
remote host as an input argument. However, if you are using the object to communicate
with a specific instrument, you should specify the remote host and the port number.

Note: Although UDP is a stateless connection, opening a UDP object with an invalid host
name will generate an error.

As described in “Configuring Properties During Object Creation” on page 3-3, you can
also configure property values during object creation, such as the LocalPort property if
you will use the object to read data from the instrument.

For example, to create a UDP object associated with the remote host 127.0.0.1, remote
port 4012, and local port 3533,

u = udp("127.0.0.1", 4012, "LocalPort®, 3533);

The UDP object u now exists in the MATLAB workspace. You can display the class of u
with the whos command.

whos u
Name Size Bytes Class
u 1x1 632 udp object

Grand total is 12 elements using 632 bytes

When the UDP object is created, the following properties are assigned values based
on the values provided to the upd function. These general purpose properties provide
information about the UDP object.

Create a UDP Object

UDP Descriptive Properties

Property Name Description

Name Specify a descriptive name for the UDP object.

RemoteHost Specify the remote host.

RemotePort Specify the remote host port for the connection.

Type Indicate the object type.

LocalPort Specify the local host port, if you are expecting to receive
data from the instrument.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

You can display the values of these properties for u with the get function.

u.Name
ans =
UbP-127.0.0.1

u.RemoteHost
ans =
127.0.0.1

u.RemotePort
ans =
4012

u.Type
ans =
udp

u.LocalPort*®
ans =
3533

7-11

7 Controlling Instruments Using TCP/IP and UDP

7-12

The UDP Object Display

The UDP object provides you with a convenient display that summarizes important
configuration and state information. You can invoke the display summary these three
ways:

* Type the UDP object variable name at the command line.
+ Exclude the semicolon when creating a UDP object.

+ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by right-clicking
an instrument object and selecting Display Summary from the context menu.

The display summary for the UDP object u is given below.

UDP Object : UDP-127.0.0.1

Communication Settings

RemotePort: 4012
RemoteHost: 127.0.0.1
Terminator: "LF*

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

dle

OO m

Enable Port Sharing over UDP

UDP ports can be shared by other applications to allow for multiple applications to listen
to the UDP datagrams on that port. You can bind a UDP object to a specific LocalPort
number, and in another application bind a UDP socket to that same local port number so
both can receive UDP broadcast data.

This allows for the ability to listen to UDP broadcasts on the same local port number in
both MATLAB and other applications. You can enable and disable this capability with a
new property of the UDP object called EnablePortSharing.

Create a UDP Object

The EnablePortSharing property allows you to control UDP port sharing, and the
possible values are on and off. The default value is ofF.

EnablePortSharing Values Result

“on* Allows other UDP sockets to bind to the
UDP object’s LocalPort.

"off" (default) Prevents other UDP sockets from binding
to the UDP object’s LocalPort.

Note that you need to set this property before calling fopen on the UDP object, or you
will get an error.

This example shows creating a UDP object, assigning the local port, enabling port
sharing, then opening the connection.

u = udpQ);
u.LocalPort = 5000;
u.EnablePortSharing =
fopen(u)

on";

You can now do read and write operations, and other applications can access the port
since port sharing is enabled.

7-13

7 Controlling Instruments Using TCP/IP and UDP

UDP Communication Between Two Hosts

7-14

These are the minimum steps required to communicate between two hosts over UDP.

This example illustrates how you can use UDP objects to communicate between two
dedicated hosts. In this example, you know the names of both hosts and the ports they
use for communication with each other. One host has the name doejohn.dhpc, using
local port 8844; and the other host is doetom.dhpc, using local port 8866. Note that
each host regards the other host's port as the RemotePort:

1

Create interface objects — Create a UDP object on each host, referencing the
other as the remote host.

On host doejohn.dhpc, create ul. The object constructor specifies the name of
the remote host, the remote port on that other host, and the local port to use on the
machine where this object is created:

ul = udp("doetom.dhpc®, "RemotePort®, 8866, "LocalPort", 8844)
On host doetom.dhpc, create u2:

u2 = udp("doejohn.dhpc®, "RemotePort®, 8844, "LocalPort", 8866)
Connect the objects — Open both UDP objects, so that each can communicate with
the other host.

On host doejohn.dhpc, open ul:
Ffopen(ul)

On host doetom.dhpc, open u2:
fopen(u2)

Write and read data — Communication between the two hosts is now a matter of
sending and receiving data. Write a message from doejohn.dhpc to doetom.dhpc.

On host doejohn.dhpc, write data to the remote host via ul:
fprintf(ul, "Ready for data transfer.")
On host doetom.dhpc, read data coming in from the remote host via u2:

fscanf(u2)
ans =

UDP Communication Between Two Hosts

Ready for data transfer.

Disconnect and clean up — When you no longer need ul on host doe john.dhpc,
you should disconnect it and remove it from memory and from the MATLAB
workspace.

fclose(ul)
delete(ul)
clear ul

When you no longer need u2, perform a similar cleanup on the host doetom.dhpc.
fclose(u2)

delete(u2)
clear u2

7-15

7 Controlling Instruments Using TCP/IP and UDP

Rules for Completing Read and Write Operations over TCP/IP and

UDP

7-16

The rules for completing synchronous and asynchronous read and write operations are
described here.

For a general overview about writing and reading data, as well as a list of all associated
functions and properties, refer to “Communicating with Your Instrument” on page 2-8.

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these conditions is
satisfied:

* The specified data is written.

* The time specified by the Timeout property passes.

In addition to these rules, you can stop an asynchronous write operation at any time with
the stopasync function.

A text command is processed by the instrument only when it receives the required
terminator. For TCP/IP and UDP objects, each occurrence of \n in the ASCII command is
replaced with the Terminator property value. Because the default format for fprintf
1is %s\n, all commands written to the instrument will end with the Terminator value.
The default value of Terminator is the line feed character. The terminator required by
your instrument will be described in its documentation.

Completing Read Operations

A read operation with fgetl, fgets, fscanf, or readasync completes when one of
these conditions is satisfied:

* The terminator specified by the Terminator property is read. For UDP objects,
DatagramTerminateMode must be ofF.

+ The time specified by the Timeout property passes.

* The input buffer is filled.

+ The specified number of values is read (Fscanf and readasync only). For UDP
objects, DatagramTerminateMode must be ofF.

Rules for Completing Read and Write Operations over TCP/IP and UDP

* A datagram is received (for UDP objects, only when DatagramTerminateMode is on).
A read operation with fread completes when one of these conditions is satisfied:

* The time specified by the Timeout property passes.
* The input buffer is filled.

* The specified number of values is read. For UDP objects, DatagramTerminateMode
must be oFfF,

* A datagram is received (for UDP objects, only when DatagramTerminateMode is on).

Note: Set the terminator property to " " (null), if appropriate, to ensure efficient
throughput of binary data.

In addition to these rules, you can stop an asynchronous read operation at any time with
the stopasync function.

7-17

7 Controlling Instruments Using TCP/IP and UDP

Basic Workflow to Read and Write Data over TCP/IP

This example illustrates how to use text and binary read and write operations with a
TCP/IP object connected to a remote instrument. In this example, you create a vector of
waveform data in the MATLAB workspace, upload the data to the instrument, and then
read back the waveform.

The instrument is a Sony/Tektronix AWG520 Arbitrary Waveform Generator (AWG).
Its address is sonytekawg.yourdomain.com and its port is 4000. The AWG's host IP
address 1s 192.168.1.10 and is user configurable in the instrument. The associated host
name is given by your network administrator. The port number is fixed and is found in
the instrument's documentation:

1 Create an instrument object — Create a TCP/IP object associated with the AWG.

t = tcpip(”“sonytekawg.yourdomain.com®,4000);

2 Connect to the instrument — Before establishing a connection, the
OutputBufferSize must be large enough to hold the data being written.
In this example, 2577 bytes are written to the instrument. Therefore, the
OutputBufferSize is set to 3000.

t.OutputBufferSize = 3000)

You can now connect t to the instrument.

fopen(t)
3 Write and read data — Since the instrument's byte order is little-endian, configure
the ByteOrder property to littleEndian.

t.ByteOrder = "“littleEndian”

Create the sine wave data.

X = (0:499) .*8*pi/500;

data = sin(X);

marker = zeros(length(data),1);
marker(1) = 3;

Instruct the instrument to write the file sin.wfm with Waveform File format, a total
length of 2544 bytes, and a combined data and marker length of 2500 bytes.

fprintf(t, “%s", ["MMEMORY :DATA “sin.wfm",#42544MAGIC 1000" 13 10])
fprintf(t, "%s", "#42500")

7-18

Basic Workflow to Read and Write Data over TCP/IP

Write the sine wave to the instrument.
for (i = 1:length(data)),
fwrite(t,data(i), "float32");

fwrite(t,marker(i));
end

Instruct the instrument to use a clock frequency of 100 MS/s for the waveform.

fprintf(t, "%s",["CLOCK 1.0000000000e+008" 13 10 10])

Read the waveform stored in the function generator's hard drive. The waveform
contains 2000 bytes plus markers, header, and clock information. To store this data,
close the connection and configure the input buffer to hold 3000 bytes.

fclose(t)
t. InputBufferSize = 3000)

Reopen the connection to the instrument.
Ffopen(t)
Read the file sin.wfm from the function generator.

fprintf(t, "MMEMORY :DATA? "sin.wfm™ ")
data = fread(t,t.BytesAvailable);

The next set of commands reads the same waveform as a float32 array. To begin,
write the waveform to the AWG.

fprintf(t, "MMEMORY :DATA? "'sin.wfm™ *)

Read the file header as ASCII characters.

headerl = fscanf(t)
headerl =
#42544MAGIC 1000

Read the next six bytes, which specify the length of data.

header2
header2
#42500

fscanf(t, "%s",6)

7-19

7 Controlling Instruments Using TCP/IP and UDP

7-20

Read the waveform using float32 precision and read the markers using uint8
precision. Note that one Float32 value consists of four bytes. Therefore, the
following commands read 2500 bytes.

data = zeros(500,1);

marker = zeros(500,1);

for 1 = 1:500,

data(i) = fread(t,1,"float32%);
marker(i) = fread(t,1, uint8%);
end

Read the remaining data, which consists of clock information and termination
characters.

clock = fscanf(t);

cleanup = fread(t,2);

Disconnect and clean up — When you no longer need t, you should disconnect it
from the host, and remove it from memory and from the MATLAB workspace.

fclose(t)
delete(t)
clear t

Read and Write ASCII Data over TCP/IP

Read and Write ASCIl Data over TCP/IP

In this section...

“Functions and Properties” on page 7-21

“Configuring and Connecting to the Server” on page 7-22
“Writing ASCII Data” on page 7-22

“ASCII Write Properties” on page 7-23

“Reading ASCII Data” on page 7-24

“ASCII Read Properties” on page 7-25

“Cleanup” on page 7-25

This section provides details and examples exploring ASCII read and write operations
with a TCP/IP object.

Note: Most bench-top instruments (oscilloscopes, function generators, etc.) that provide
network connectivity do not use raw TCP socket communication for instrument command
and control. Instead, it is supported through the VISA standard. For more information on
using VISA to communicate with your instrument, see “VISA Overview” on page 5-2.

Functions and Properties

These functions are used when reading and writing text:

Function Purpose
fprintf Write text to the server.
fscanf Read data from the server and format as text.

These properties are associated with reading and writing text:

Property Purpose

ValuesReceived Specifies the total number of values read from the server.

ValuesSent Specifies the total number of values sent to the server.

InputBufferSize |Specifies the total number of bytes that can be queued in the
input buffer at one time.

7-21

7 Controlling Instruments Using TCP/IP and UDP

7-22

Property Purpose

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

Terminator Character used to terminate commands sent to the server.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The
echo server allows you to experiment with the basic functionality of the TCP/IP objects
without connecting to an actual device. An echo server is a service that returns to the
sender's address and port, the same bytes it receives from the sender.

echotcpip(“on®, 4000)

You need to create a TCP/IP object. In this example, create a TCP/IP object associated
with the host 127.0.0.1 (your local machine), port 4000. In general, the host name or
address and the host port will be defined by the device and your network configuration.

t = tcpip("127.0.0.1%, 4000);

Before you can perform a read or write operation, you must connect the TCP/IP object to
the server with the fopen function.

fopen(t)

If the object was successfully connected, its Status property is automatically configured
to open.

t.Status

ans =
open

Writing ASCIl Data

You use the fprintf function to write ASCII data to the server.

Read and Write ASCII Data over TCP/IP

fprintf(t, “"Hello World 123%);

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

+ All the data is written

* A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. All
occurrences of \n in the command being written to the server are replaced with the

Terminator property value. When using the default format, %s\n, all commands
written to the server will end with the Terminator character.

For the previous command, the linefeed (LF) is sent after "Hello World 123" is
written to the server, thereby indicating the end of the command.

You can also specify the format of the command written by providing a third input
argument to Fprintf. The accepted format conversion characters include: d, 1, o, u, x, X,
f,e, E, g, G, c, and s.

For example, the data command previously shown can be written to the server using
three calls to fprintf.

fprintf(t, "%s", "Hello");
fprintf(t, "%s", " World");
fprintf(t, "%s\n", " 123%);

The Terminator character indicates the end of the command and is sent after the last
call to fprintf.

ASCII Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

t.OutputBufferSize
ans =
512

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

t.ValuesSent

7-23

7 Controlling Instruments Using TCP/IP and UDP

7-24

ans =
32

Reading ASCII Data

You use the Ffscanf function to read ASCII data from the server. For example, to read
back the data returned from the echo server for our first fprintf command:

data = fscanf(t)
data =
Hello World 123

By default, the fscanT function reads data using the "%c" format and blocks the
MATLAB command line until one of the following occurs:

* The terminator is received as specified by the Terminator property
+ A timeout occurs as specified by the Timeout property
* The input buffer is filled

* The specified number of values is read

You can also specify the format of the data read by providing a second input argument to
fscanf. The accepted format conversion characters include: d, 1, o, u, x, X, f, e, E, g, G, c,
and s.

The following commands return a numeric value as a double.

Clear anything still in the input buffer from the previous commands.
Flushinput(t);

Send the data to the server.

fprintf(t, "0.80007);

Read the response.

data
data

fscanf(t, "%f")

0.8000

isnumeric(data)
ans =

Read and Write ASCII Data over TCP/IP

ASCII Read Properties

The InputBufferSize property specifies the maximum number of bytes you can read
from the server. By default, InputBufferSize is 512.

t. InputBufferSize
ans =
512

The ValuesReceived property indicates the total number of values read from the
server, including the terminator.

t.ValuesReceived
ans =
32

Cleanup

If you are finished with the TCP/IP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(t);
delete(t);
clear t

echotcpip(“off");

7-25

7 Controlling Instruments Using TCP/IP and UDP

Read and Write Binary Data over TCP/IP

7-26

In this section...

“Functions and Properties” on page 7-26

“Configuring and Connecting to the Server” on page 7-27
“Writing Binary Data” on page 7-28

“Binary Write Properties” on page 7-29

“Configuring InputBufferSize” on page 7-29

“Reading Binary Data” on page 7-30

“Cleanup” on page 7-31

This section provides details and examples exploring binary read and write operations
with a TCP/IP object.

Note: Most bench-top instruments (oscilloscopes, function generators, etc.) that provide
network connectivity do not use raw TCP socket communication for instrument command
and control. Instead, it is supported through the VISA standard. For more information on
using VISA to communicate with your instrument, see “VISA Overview” on page 5-2.

Functions and Properties

These functions are used when reading and writing binary data:

Function Purpose
fread Read binary data from the server.
fwrite Write binary data to the server.

These properties are associated with reading and writing binary data:

Property Purpose

ValuesReceived Specifies the total number of values read from the server.

ValuesSent Specifies the total number of values sent to the server.

InputBufferSize |Specifies the total number of bytes that can be queued in the
input buffer at one time.

Read and Write Binary Data over TCP/IP

Property Purpose

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

ByteOrder Specifies the byte order of the server.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The
echo server allows you to experiment with the basic functionality of the TCP/IP objects
without connecting to an actual device. An echo server is a service that returns to the
sender's address and port, the same bytes it receives from the sender.

echotcpip(“on®, 4000)

You need to create a TCP/IP object. In this example, create a TCP/IP object associated
with the host 127.0.0.1 (your local machine), port 4000. In general, the host name or
address and the host port will be defined by the device and your network configuration.

t = tcpip("127.0.0.1", 4000);

You may need to configure the OutputBufferSize of the TCP/IP object. The
OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

t.OutputBufferSize
ans =
512

If the command specified in fwrite contains more than 512 bytes, an error is returned
and no data is written to the server. In this example 4000 bytes will be written to the
server. Therefore, the OutputBufferSize is increased to 4000.

t._OutputBufferSize = 4000;
t.OutputBufferSize

7-27

7 Controlling Instruments Using TCP/IP and UDP

7-28

ans =
4000

You may need to configure the ByteOrder of the TCP/IP object. The ByteOrder
property specifies the byte order of the server. By default ByteOrder is bigEndian.

t.ByteOrder
ans =
bigEndian

If the server's byte order is little-endian, the ByteOrder property of the object can be
configured to IittleEndian:

t.ByteOrder = littleEndian
t.ByteOrder

ans =
littleEndian

Before you can perform a read or write operation, you must connect the TCP/IP object to
the server with the fopen function.

fopen(t)

If the object was successfully connected, its Status property is automatically configured
to open.

t.Status
ans =
open

Writing Binary Data

You use the fwrite function to write binary data to the server. For example, the
following command will send a sine wave to the server.

Construct the sine wave to be written to the server.

x = (0:999) .* 8 * pi / 1000;
data = sin(x);

Write the sine wave to the server.

fwrite(t, data, "float32%);

Read and Write Binary Data over TCP/IP

By default, the fwrite function operates in a synchronous mode. This means that
fwrite blocks the MATLAB command line until one of the following occurs:

+ All the data is written

+ A timeout occurs as specified by the Timeout property

By default the fwrite function writes binary data using the uchar precision. However,

other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

Note: When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

Binary Write Properties

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

t.ValuesSent
ans =
1000

Configuring InputBufferSize

The InputBufferSize property specifies the maximum number of bytes that you can
read from the server. By default, InputBufferSize is 512.

t. InputBufferSize
ans =
512

Next, the waveform stored in the function generator's memory will be read. The
waveform contains 4000 bytes. Configure the InputBufferSize to hold 4000 bytes.
Note, the InputBufferSize can be configured only when the object is not connected to
the server.

fclose(t);
t.InputBufferSize = 4000;
t.InputBufferSize

7-29

7 Controlling Instruments Using TCP/IP and UDP

7-30

ans =
4000

Now that the property is configured correctly, you can reopen the connection to the
server:

fopen(t);

Reading Binary Data
You use the Fread function to read binary data from the server.
The fread function blocks the MATLAB command line until one of the following occurs:

* A timeout occurs as specified by the Timeout property
* The specified number of values is read

* The InputBufferSize number of values is read

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note: When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

For reading float32 binary data, send the waveform again. Closing the object clears
any available data from earlier writes.

fwrite(t, data, "float32%);
Now read the same waveform as a float32 array.

data = fread(t, 1000, "float32");

The ValuesReceived property indicates the total number of values read from the
server.

t.ValuesReceived
ans =

Read and Write Binary Data over TCP/IP

1000

Cleanup

If you are finished with the TCP/IP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(t);
delete(t);
clear t

echotcpip(Toff");

7-31

7 Controlling Instruments Using TCP/IP and UDP

Asynchronous Read and Write Operations over TCP/IP

In this section...

“Functions and Properties” on page 7-32

“Synchronous Versus Asynchronous Operations” on page 7-33

“Configuring and Connecting to the Server” on page 7-33

“Reading Data Asynchronously” on page 7-34

“Reading Data Asynchronously — Continuous ReadAsyncMode” on page 7-34
“Reading Data Asynchronously — Manual ReadAsyncMode” on page 7-35
“Defining an Asynchronous Read Callback” on page 7-36

“Using Callbacks During an Asynchronous Read” on page 7-36

“Writing Data Asynchronously” on page 7-37

“Cleanup” on page 7-37

This section provides details and examples exploring asynchronous read and write
operations with a TCP/IP object.

Note: Most bench-top instruments (oscilloscopes, function generators, etc.) that provide
network connectivity do not use raw TCP socket communication for instrument command
and control. Instead, it is supported through the VISA standard. For more information on
using VISA to communicate with your instrument, see “VISA Overview” on page 5-2.

Functions and Properties

These functions are associated with reading and writing text asynchronously:

Function Purpose

fprintf Write text to a server.

readasync Asynchronously read bytes from a server.
stopasync Stop an asynchronous read or write operation.

These properties are associated with reading and writing text asynchronously:

7-32

Asynchronous Read and Write Operations over TCP/IP

Property Purpose

BytesAvailable Indicates the number of bytes available in the input buffer.

TransferStatus Indicates what type of asynchronous operation is in progress.

ReadAsyncMode Indicates whether data is read continuously in the background
or whether you must call the readasync function to read data
asynchronously.

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Synchronous Versus Asynchronous Operations

The object can operate in synchronous mode or in asynchronous mode. When the object
is operating synchronously, the read and write routines block the MATLAB command
line until the operation has completed or a timeout occurs. When the object is operating
asynchronously, the read and write routines return control immediately to the MATLAB
command line.

Additionally, you can use callback properties and callback functions to perform tasks
as data is being written or read. For example, you can create a callback function that
notifies you when the read or write operation has finished.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The
echo server allows you to experiment with the basic functionality of the TCP/IP objects
without connecting to an actual device. An echo server is a service that returns to the
sender's address and port, the same bytes it receives from the sender.

echotcpip(“on®, 4000)

7-33

7 Controlling Instruments Using TCP/IP and UDP

You need to create a TCP/IP object. In this example, create a TCP/IP object associated
with the host 127.0.0.1 (your local machine), port 4000. In general, the host name or
address and the host port will be defined by the device and your network configuration.

t = tcpip("127.0.0.1%, 4000);

Before you can perform a read or write operation, you must connect the TCP/IP object to
the server with the fopen function.

fopen(t)

If the object was successfully connected, its Status property is automatically configured
to open.

t.Status
ans =
open

Reading Data Asynchronously

You can read data asynchronously with the TCP/IP object in one of these two ways:

* Continuously, by setting ReadAsyncMode to continuous. In this mode, data is
automatically stored in the input buffer as it becomes available from the server.

* Manually, by setting ReadAsyncMode to manual. In this mode, you must call the
readasync function to store data in the input buffer.

The fscanf, fread, fgetl and fgets functions are used to bring the data from the
input buffer into MATLAB. These functions operate synchronously.

Reading Data Asynchronously - Continuous ReadAsyncMode

To begin, read data continuously.

t.ReadAsyncMode = continuous;

Now, send data to the server that will be returned for reading.

fprintf(t, “"Hello World 123%);

Because the ReadAsyncMode property is set to continuous, the object is continuously
checking whether any data is available. Once the last fprintf function completes, the

server begins sending data, the data is read from the server and is stored in the input
buffer.

7-34

Asynchronous Read and Write Operations over TCP/IP

t._BytesAvailable
ans =
16

You can bring the data from the object's input buffer into the MATLAB workspace with
fscanf.

fscanf(t)
ans =
Hello World 123

Reading Data Asynchronously - Manual ReadAsyncMode

Next, read data manually.

t._ReadAsyncMode = manual;

Now, send data to the server that will be returned for reading.

fprintf(t, "Hello World 456%);

Once the last Fprintf function completes, the server begins sending data. However,
because ReadAsyncMode is set to manual, the object is not reading the data being sent
from the server. Therefore no data is being read and placed in the input buffer.

t.BytesAvailable
ans =
0]

The readasync function can asynchronously read the data from the server. The
readasync function returns control to the MATLAB command line immediately.

The readasync function takes two input arguments. The first argument is the server
object and the second argument is the size, the amount of data to be read from the
server.

The readasync function without a size specified assumes size is given by the
difference between the InputBufferSize property value and the BytesAvailable
property value. The asynchronous read terminates when:

* The terminator is read as specified by the Terminator property

* The specified number of bytes have been read

+ A timeout occurs as specified by the Timeout property

7-35

7 Controlling Instruments Using TCP/IP and UDP

7-36

* The input buffer is filled
An error event will be generated if readasync terminates due to a timeout.

The object starts querying the server for data when the readasync function is called.
Because all the data was sent before the readasync function call, no data will be stored
in the input buffer and the data is lost.

When the TCP/IP object is in manual mode (the ReadAsyncMode property is configured

to manual), data that is sent from the server to the computer is not automatically stored
in the input buffer of the TCP/IP object. Data is not stored until readasync or one of the
blocking read functions is called.

Manual mode should be used when a stream of data is being sent from your server and
you only want to capture portions of the data.

Defining an Asynchronous Read Callback

You can configure a TCP/IP object to notify you when a terminator has been read using
the dispcal Iback function.

t.ReadAsyncMode = "continuous®;
t.BytesAvailableFcn = "dispcallback”;

Note, the default value for the BytesAvai lableFcnMode property indicates that the
callback function defined by the BytesAvai lableFcn property will be executed when
the terminator has been read.

The callback function dispcal Iback displays event information for the specified event.
Using the syntax dispcal Iback(obj, event), it displays a message containing the
type of event, the name of the object that caused the event to occur, and the time the
event occurred.

callbackTime = datestr(datenum(event.Data.AbsTime));
fprintf([A * event.Type " event occurred for * obj.Name * at *
callbackTime *.\n"]);

Using Callbacks During an Asynchronous Read

Once the terminator is read from the server and placed in the input buffer,
dispcal Iback is executed and a message is posted to the MATLAB command window
indicating that a BytesAvai lable event occurred.

Asynchronous Read and Write Operations over TCP/IP

fprintf(t, “"Hello World 789%)
t._BytesAvailable
ans =

16

data = fscanf(t, "%c", 18)
data =
Hello World 789

Note: If you need to stop an asynchronous read or write operation, you do not have to
wait for the operation to complete. You can use the stopasync function to stop the
asynchronous read or write.

Writing Data Asynchronously

You can perform an asynchronous write with the fprintf or fwrite functions by
passing "async” as the last input argument.

In asynchronous mode, you can use callback properties and callback functions to perform
tasks while data is being written. For example, configure the object to notify you when an
asynchronous write operation completes.

t.OutputEmptyFcn = “dispcallback”;
fprintf(t, “Hello World 123", “async”)

Note: If you need to stop an asynchronous read or write operation, you do not have to
wait for the operation to complete. You can use the stopasync function to stop the
asynchronous read or write.

Cleanup

If you are finished with the TCP/IP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(t);
delete(t);
clear t

echotcpip(“off");

7-37

7 Controlling Instruments Using TCP/IP and UDP

Basic Workflow to Read and Write Data over UDP

7-38

This example shows the basic workflow of text read and write operations with a UDP
object connected to a remote instrument.

The instrument used is an echo server on a Linux-based PC. An echo server is a service
available from the operating system that returns (echoes) received data to the sender.
The host name is daqlabl1l and the port number is 7. The host name is assigned by your
network administrator.

1 Create an instrument object — Create a UDP object associated with daqlabl11.

u = udp(“daqlabl11l*,7);
2 Connect to the instrument — Connect u to the echo server.

fopen(u)
3 Write and read data — You use the fprintf function to write text data to the
instrument. For example, write the following string to the echo server.

fprintf(u, "Request Time")

UDP sends and receives data in blocks that are called datagrams. Each time you
write or read data with a UDP object, you are writing or reading a datagram. For
example, the string sent to the echo server constitutes a datagram with 13 bytes —
12 ASCII bytes plus the line feed terminator.

You use the fscanf function to read text data from the echo server.

fscanft(u)
ans =
Request Time

The DatagramTerminateMode property indicates whether a read operation
terminates when a datagram is received. By default, DatagramTerminateMode is
on and a read operation terminates when a datagram is received. To return multiple
datagrams in one read operation, set DatagramTerminateMode to off.

The following commands write two datagrams. Note that only the second datagram
sends the terminator character.

fprintf(u, "%s", "Request Time")
fprintf(u, "%s\n", "Request Time")

Basic Workflow to Read and Write Data over UDP

Since DatagramTerminateMode is off, fscanf reads across datagram boundaries
until the terminator character is received.

u.DatagramTerminateMode = "off"
data = fscanf(u)
data =
Request TimeRequest Time
4 Disconnect and clean up — When you no longer need u, you should disconnect it
from the host, and remove it from memory and from the MATLAB workspace.

fclose(u)
delete(u)
clear u

Note: UDP ports can be shared by other applications to allow for multiple applications
to listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications.
You can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

7-39

7 Controlling Instruments Using TCP/IP and UDP

Read and Write ASCIl Data over UDP

This section provides details and examples exploring ASCII read and write operations
with a UDP object.

In this section...

“Functions and Properties” on page 7-40

“Configuring and Connecting to the Server” on page 7-41
“Writing ASCII Data” on page 7-42

“ASCII Write Properties” on page 7-42

“Reading ASCII Data” on page 7-43

“ASCII Read Properties” on page 7-44

“Cleanup” on page 7-45

Functions and Properties

These functions are used when reading and writing text:

Function Purpose
fprintf Write text to the server.
fscanf Read data from the server and format as text.

These properties are associated with reading and writing text:

Property Purpose

ValuesReceived Specifies the total number of values read from the server.

ValuesSent Specifies the total number of values sent to the server.

InputBufferSize |Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

7-40

Read and Write ASCIl Data over UDP

Property Purpose

Terminator Character used to terminate commands sent to the server.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the UDP objects without
connecting to an actual device. An echo server is a service that returns to the sender's
address and port, the same bytes it receives from the sender.

echoudp(“on®, 8000)

You need to create a UDP object. In this example, create a UDP object associated with
the host 127.0.0.1 (your local machine), port 8000. In general, the host name or address
and the host port will be defined by the device and your network configuration.

u = udp("127.0.0.1", 8000);

Before you can perform a read or write operation, you must connect the UDP object to the
server with the Fopen function.

fopen(u)

If the object was successfully connected, its Status property is automatically configured
to open.

u.Status
ans =
open

Note: UDP ports can be shared by other applications to allow for multiple applications
to listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications.

7-41

7 Controlling Instruments Using TCP/IP and UDP

7-42

You can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

Writing ASCII Data

You use the Fprintf function to write ASCII data to the server. For example, write a
string to the echoserver.

fprintf(u, "Request Time");

By default, the fprintf function operates in a synchronous mode. This means that
fprintf blocks the MATLAB command line until one of the following occurs:

+ All the data is written

+ A timeout occurs as specified by the Timeout property

By default the fprintf function writes ASCII data using the %s\n format. All
occurrences of \n in the command being written to the server are replaced with the

Terminator property value. When using the default format, %s\n, all commands
written to the server will end with the Terminator character.

For the previous command, the linefeed (LF) is sent after "Request Time" is written to
the server, thereby indicating the end of the command.

You can also specify the format of the command written by providing a third input
argument to Fprintf. The accepted format conversion characters include: d, 1, o, u, x, X,
f,e, E, g, G, c, and s.

For example, the data command previously shown can be written to the server using two
calls to fprintf.

fprintf(u, "%s", "Request”);
fprintf(u, "%s*\n, "Time");

The Terminator character indicates the end of the command and is sent after the last
call to fprintf.

ASCIl Write Properties

The OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

Read and Write ASCIl Data over UDP

u.OutputBufferSize
ans =
512

If the command specified in Fprintf contains more than 512 bytes, an error is returned
and no data is written to the server.

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

u.ValuesSent
ans =
26

Remove any data that was returned from the echoserver and captured by the UDP object.

Fflushinput(u);

Reading ASCII Data

UDP sends and receives data in blocks that are called datagrams. Each time you write
or read data with a UDP object, you are writing or reading a datagram. For example,
a datagram with 13 bytes (12 ASCII bytes plus the LF terminator) is sent to the
echoserver.

fprintf(u, "Request Time");
The echo server will send back a datagram containing the same 13 bytes.

u.BytesAvailable
ans =
13

You use the Fscanf function to read ASCII data from the server.

data
data =
Request Time

fscanf(u)

By default, the fscanT function reads data using the "%c" format and blocks the
MATLAB command line until one of the following occurs:

* The terminator is received as specified by the Terminator property Gf
DatagramTerminateMode is off)

+ A timeout occurs as specified by the Timeout property

7-43

7 Controlling Instruments Using TCP/IP and UDP

7-44

* The input buffer is filled
* The specified number of values is read (if DatagramTerminateMode is off)
+ A datagram has been received (if DatagramTerminateMode is on)

You can also specify the format of the data read by providing a second input argument to
fscanf. The accepted format conversion characters include: d, 1, o, u, x, X, f, e, E, g, G, c,
and s.

For example, the character vector*0.80" sent to the echoserver can be read into
MATLAB as a double using the %F format character vector.

fprintf(u, "0.80%);
data = fscanf(u, "%f")
data

0.8000

isnumeric(data)
ans =
1

ASCII Read Properties

The DatagramTerminateMode property indicates whether a read operation should
terminate when a datagram is received. By default DatagramTerminateMode is
on, which means that a read operation terminates when a datagram is received. To
read multiple datagrams at once, you can set DatagramTerminateMode to off. In
this example, two datagrams are written. Note, only the second datagram sends the
Terminator character.

fprintf(u, "%s", "Request Time");
fprintf(u, "%s\n", "Request Time");

Since DatagramTerminateMode is off, fscanf will read across datagram boundaries
until the Terminator character is received.

u.DatagramTerminateMode = "off";
data = fscanf(u)
data =

Request TimeRequest Time

The InputBufferSize property specifies the maximum number of bytes you can read
from the server. By default, InputBufferSize is 512.

Read and Write ASCIl Data over UDP

u. InputBufferSize
ans =
512

The ValuesReceived property indicates the total number of values read from the
server, including the terminator.

u.ValuesReceived
ans =
43

Cleanup

If you are finished with the UDP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(u);
delete(u);
clear u

echoudp("off");

7-45

7 Controlling Instruments Using TCP/IP and UDP

Read and Write Binary Data over UDP

This section provides details and examples exploring binary read and write operations

with a UDP object.

In this section...

“Writing Binary Data”

“Functions and Properties” on page 7-46

“Configuring and Connecting to the Server” on page 7-47

on page 7-48

“Configuring InputBufferSize” on page 7-49
“Reading Binary Data” on page 7-49
“Cleanup” on page 7-51

Functions and Properties

These functions are used when reading and writing binary data:

Function Purpose
fread Read binary data from the instrument or server.
fwrite Write binary data to the instrument or server.

These properties are associated with reading and writing binary data:

Property Purpose

ValuesReceived Specifies the total number of values read from the instrument or
server.

ValuesSent Specifies the total number of values sent to the instrument or
server.

InputBufferSize |[Specifies the total number of bytes that can be queued in the
input buffer at one time.

OutputBufferSize |Specifies the total number of bytes that can be queued in the
output buffer at one time.

DatagramTerminate Defines how fread and fscanT read operations terminate.

7-46

Read and Write Binary Data over UDP

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the UDP objects without
connecting to an actual device. An echo server is a service that returns to the sender's
address and port, the same bytes it receives from the sender.

echoudp(“on®, 8000)

You need to create a UDP object. In this example, create a UDP object associated with
the host 127.0.0.1 (your local machine), port 8000. In general, the host name or address
and the host port will be defined by the device and your network configuration.

u = udp("127.0.0.1", 8000);

You may need to configure the OutputBufferSize of the UDP object. The
OutputBufferSize property specifies the maximum number of bytes that can be
written to the server at once. By default, OutputBufferSize is 512.

u.OutputBufferSize
ans =
512

If the command specified in fwrite contains more than 512 bytes, an error is returned
and no data is written to the server. In this example 1000 bytes will be written to the
instrument. Therefore, the OutputBufferSize is increased to 1000.

u.OutputBufferSize = 1000
u.OutputBufferSize

ans =
1000

Before you can perform a read or write operation, you must connect the UDP object to the
server with the fopen function.

fopen(u)

7-47

7 Controlling Instruments Using TCP/IP and UDP

7-48

If the object was successfully connected, its Status property is automatically configured
to open.

u.Status
ans =
open

Note: UDP ports can be shared by other applications to allow for multiple applications
to listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications.
You can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

Writing Binary Data
You use the fwrite function to write binary data to the server or instrument.

By default, the fwrite function operates in a synchronous mode. This means that
fwrite blocks the MATLAB command line until one of the following occurs:

+ All the data is written
+ A timeout occurs as specified by the Timeout property
By default the fwrite function writes binary data using the uchar precision. However,

other precisions can also be used. For a list of supported precisions, see the function
reference page for fwrite.

UDP sends and receives data in blocks that are called datagrams. Each time you write
or read data with a UDP object, you are writing or reading a datagram. In the example
below, a datagram with 1000 bytes, 4 bytes per integer number, will be sent to the
echoserver.

fwrite(u, 1:250, "int32%);

Note: When performing a write operation, you should think of the transmitted data in
terms of values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes.

Read and Write Binary Data over UDP

The ValuesSent property indicates the total number of values written to the server
since the object was connected to the server.

u.ValuesSent

ans =
250

Configuring InputBufferSize

The InputBufferSize property specifies the maximum number of bytes that you can
read from the server. By default, InputBufferSize is 512.

u. InputBufferSize
ans =
512

In the next example, 1000 bytes will be read from the server. Configure the
InputBufferSize to hold 1000 bytes. Note, the InputBufferSize can be configured
only when the object is not connected to the server or instrument.

fclose(u);

u. InputBufferSize = 1000);

u. InputBufferSize

ans =
1000

Now that the property is configured correctly, you can reopen the connection to the
server:

fopen(u);

Reading Binary Data
You use the fread function to read binary data from the server or instrument.

The fread function blocks the MATLAB command line until one of the following occurs:

+ A timeout occurs as specified by the Timeout property
* The input buffer is filled

* The specified number of values is read (if DatagramTerminateMode is off)

7-49

7 Controlling Instruments Using TCP/IP and UDP

+ A datagram has been received (if DatagramTerminateMode is on)

By default the fread function reads binary data using the uchar precision. However,
other precisions can also be used. For a list of supported precisions, see the function
reference page for fread.

Note: When performing a read operation, you should think of the received data in terms
of values rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes.

You can read int32 binary data. For example, read one datagram consisting of 250
integers from the instrument or server.

fwrite(u, 1:250, "int327);
data = fread(u, 250, "int327);

The ValuesReceived property indicates the total number of values read from the
server.

u.ValuesReceived
ans =
500

The DatagramTerminateMode property indicates whether a read operation should
terminate when a datagram is received. By default DatagramTerminateMode is on,
which means that a read operation terminates when a datagram is received. To read
multiple datagrams at once, you can set DatagramTerminateMode to off. In this
example, two datagrams are written to the echoserver.

fwrite(u, 1:125, "int32%);
fwrite(u, 1:125, "int32%);

Because DatagramTerminateMode is off, fread will read across datagram boundaries
until 250 integers have been received.

u.DatagramTerminateMode = "off";
data = fread(u, 250, "int327);
size(data)
ans =

250

7-50

Read and Write Binary Data over UDP

Cleanup

If you are finished with the UDP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(u);
delete(u);
clear u

echoudp("off");

7-51

7 Controlling Instruments Using TCP/IP and UDP

Asynchronous Read and Write Operations over UDP

7-52

This section provides details and examples exploring asynchronous read and write
operations with a UDP object.

In this section...

“Functions and Properties” on page 7-52

“Synchronous Versus Asynchronous Operations” on page 7-53

“Configuring and Connecting to the Server” on page 7-53

“Reading Data Asynchronously” on page 7-54

“Reading Data Asynchronously Using Continuous ReadAsyncMode” on page 7-54
“Reading Data Asynchronously Using Manual ReadAsyncMode” on page 7-55
“Defining an Asynchronous Read Callback” on page 7-56

“Using Callbacks During an Asynchronous Read” on page 7-57

“Writing Data Asynchronously” on page 7-57

“Cleanup” on page 7-58

Functions and Properties

These functions are associated with reading and writing text asynchronously:

Function Purpose

fprintf Write text to a server.

readasync Asynchronously read bytes from a server.
stopasync Stop an asynchronous read or write operation.

These properties are associated with reading and writing text asynchronously:

Property Purpose

BytesAvailable Indicates the number of bytes available in the input buffer.

TransferStatus Indicates what type of asynchronous operation is in progress.

ReadAsyncMode Indicates whether data is read continuously in the background
or whether you must call the readasync function to read data
asynchronously.

Asynchronous Read and Write Operations over UDP

Additionally, you can use all the callback properties during asynchronous read and write
operations.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Synchronous Versus Asynchronous Operations

The object can operate in synchronous mode or in asynchronous mode. When the object
1s operating synchronously, the read and write routines block the MATLAB command
line until the operation has completed or a timeout occurs. When the object is operating
asynchronously, the read and write routines return control immediately to the MATLAB
command line.

Additionally, you can use callback properties and callback functions to perform tasks
as data is being written or read. For example, you can create a callback function that
notifies you when the read or write operation has finished.

Configuring and Connecting to the Server

For this example, we will use an echo server that is provided with the toolbox. The echo
server allows you to experiment with the basic functionality of the UDP objects without
connecting to an actual device. An echo server is a service that returns to the sender's
address and port, the same bytes it receives from the sender.

echoudp("on®, 8000);

You need to create a UDP object. In this example, create a UDP object associated with
the host 127.0.0.1 (your local machine), port 8000. In general, the host name or address
and the host port will be defined by the device and your network configuration.

u = udp(~127.0.0.1", 8000);

Before you can perform a read or write operation, you must connect the UDP object to the
server with the fopen function.

fopen(u)

7-53

7 Controlling Instruments Using TCP/IP and UDP

If the object was successfully connected, its Status property is automatically configured
to open.

u.Status
ans =
open

Note: UDP ports can be shared by other applications to allow for multiple applications
to listen to the UDP datagrams on that port. This allows for the ability to listen to UDP
broadcasts on the same local port number in both MATLAB and other applications.
You can enable and disable this capability with a new property of the UDP object called
EnablePortSharing. See “Enable Port Sharing over UDP” on page 7-12.

Reading Data Asynchronously

You can read data asynchronously with the UDP object in one of these two ways:

+ Continuously, by setting ReadAsyncMode to continuous. In this mode, data is
automatically stored in the input buffer as it becomes available from the server.

* Manually, by setting ReadAsyncMode to manual. In this mode, you must call the
readasync function to store data in the input buffer.

The fscanf, fread, fgetl and Fgets functions are used to bring the data from the
input buffer into MATLAB. These functions operate synchronously.

Reading Data Asynchronously Using Continuous ReadAsyncMode
To read data continuously:

u.ReadAsyncMode = "continuous”;

To send a string to the echoserver:

fprintf(u, "Hello net.");

Because the ReadAsyncMode property is set to continuous, the object is continuously
asking the server if any data is available. The echoserver sends data as soon as it

receives data. The data is then read from the server and is stored in the object's input
buffer.

7-54

Asynchronous Read and Write Operations over UDP

u.BytesAvailable
ans =
11

You can bring the data from the object's input buffer into the MATLAB workspace with
fscanf.

mystring = fscanf(u)
mystring =
Hello net.

Reading Data Asynchronously Using Manual ReadAsyncMode

You can also read data manually.

u.ReadAsyncMode = manual;

Now, send a string to the echoserver.

fprintf(u, “Hello net_");

Once the last Fprintf function completes, the server begins sending data. However,
because ReadAsyncMode is set to manual, the object is not reading the data being sent
from the server. Therefore no data is being read and placed in the input buffer.

u.BytesAvailable
ans =
0

The readasync function can asynchronously read the data from the server. The
readasync function returns control to the MATLAB command line immediately.

The readasync function takes two input arguments. The first argument is the server
object and the second argument is the size, the amount of data to be read from the
server.

The readasync function without a size specified assumes size is given by the
difference between the InputBufferSize property value and the BytesAvailable
property value. The asynchronous read terminates when:

* The terminator is read as specified by the Terminator property

* The specified number of bytes have been read

7-55

7 Controlling Instruments Using TCP/IP and UDP

7-56

* A timeout occurs as specified by the Timeout property
* The input buffer is filled

An error event will be generated if readasync terminates due to a timeout.

The object starts querying the server for data when the readasync function is called.
Because all the data was sent before the readasync function call, no data will be stored
in the input buffer and the data is lost.

When the UDP object is in manual mode (the ReadAsyncMode property is configured to
manual), data that is sent from the server to the computer is not automatically stored
in the input buffer of the UDP object. Data is not stored until readasync or one of the
blocking read functions is called.

Manual mode should be used when a stream of data is being sent from your server and
you only want to capture portions of the data.

Defining an Asynchronous Read Callback

You can configure a UDP object to notify you when a terminator has been read using the
dispcal lback function.

u.ReadAsyncMode = "continuous”;
u.BytesAvailableFcn = "dispcallback”;

Note, the default value for the BytesAvai lableFcnMode property indicates that the
callback function defined by the BytesAvai lableFcn property will be executed when
the terminator has been read.

u.BytesAvai lableFcnMode
ans =
terminator

The callback function dispcal Iback displays event information for the specified event.
Using the syntax dispcal Iback(obj, event), it displays a message containing the
type of event, the name of the object that caused the event to occur, and the time the
event occurred.

callbackTime = datestr(datenum(event.Data.AbsTime));
fprintf(["A " event.Type " event occurred for " obj._Name " at *
callbackTime ".\n"]);

Asynchronous Read and Write Operations over UDP

Using Callbacks During an Asynchronous Read

Once the terminator is read from the server and placed in the input buffer,
dispcal Iback is executed and a message is posted to the MATLAB command window
indicating that a BytesAvai lable event occurred.

fprintf(u, "Hello net.")
u.BytesAvailable
ans =

11

data = fscanf(u)
data =
Hello net.

If you need to stop an asynchronous read or write operation, you do not have to wait for
the operation to complete. You can use the stopasync function to stop the asynchronous
read or write.

stopasync(u);

The data that has been read from the server remains in the input buffer. You can use
one of the synchronous read functions to bring this data into the MATLAB workspace.
However, because this data represents the wrong data, the Flushinput function is
called to remove all data from the input buffer.

Flushinput(u);

Writing Data Asynchronously

You can perform an asynchronous write with the fprintf or fwrite functions by
passing "async” as the last input argument.

Configure the object to notify you when an asynchronous write operation completes.

u.OutputEmptyFcn = "dispcallback”;
fprintf(u, “Hello net.", "async®)

UDP sends and receives data in blocks that are called datagrams. Each time you write
or read data with a UDP object, you are writing or reading a datagram. In the example
below, a datagram with 11 bytes (10 ASCII bytes plus the LF terminator) will be sent to
the echoserver. Then the echoserver will send back a datagram containing the same 11
bytes.

7-57

7 Controlling Instruments Using TCP/IP and UDP

7-58

Configure the object to notify you when a datagram has been received.

u.DatagramReceivedFcn = "dispcallback”;
fprintf(u, "Hello net.", "async®)

Note: If you need to stop an asynchronous read or write operation, you do not have to
wait for the operation to complete. You can use the stopasync function to stop the
asynchronous read or write.

Cleanup

If you are finished with the UDP object, disconnect it from the server, remove it from
memory, and remove it from the workspace. If you are using the echo server, turn it off.

fclose(u);
delete(u);
clear u

echoudp("off*);

Events and Callbacks

Events and Callbacks

In this section...
“Event Types and Callback Properties” on page 7-59

“Responding To Event Information” on page 7-60

“Using Events and Callbacks” on page 7-61

Event Types and Callback Properties

The event types and associated callback properties supported by TCP/IP and UDP objects
are listed below.

TCP/IP and UDP Event Types and Callback Properties

Event Type Associated Properties
Bytes available BytesAvailableFcn
BytesAvai lableFcnCount

BytesAvai lableFcnMode

Datagram received DatagramReceivedFcn (UDP objects only)
Exrror ErrorFcn
Output empty OutputEmptyFcn
Timer TimerFcn
TimerPeriod

The datagram-received event is described below. For a description of the other event
types, refer to “Event Types and Callback Properties” on page 4-30.

Note: You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

7-59

7 Controll

ing Instruments Using TCP/IP and UDP

Datagram-Received Event

A datagram-received event is generated immediately after a complete datagram is

received in the input buffer.

This event executes the callback function specified for the DatagramReceivedFcn
property. It can be generated for both synchronous and asynchronous read operations.

Responding To Event Information

You can respond to event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The Type field
contains the event type, while the Data field contains event-specific information. As
described in “Creating and Executing Callback Functions” on page 4-32, these two fields
are associated with a structure that you define in the callback function header. Refer
to “Debugging: Recording Information to Disk” on page 17-6 to learn about storing

event information in a record file.

The event types and the values for the Type and Data fields are given below.

TCP/IP and UDP Event Information

Event Type Field Field Value
Bytes available Type BytesAvailable
Data.AbsTime day-month-year
hour:minute:second
Datagram received Type DatagramReceived
Data.AbsTime day-month-year
hour:minute:second
Data.DatagramAddress IP address character vector
Data.DatagramLength Number of bytes received as
double
Data.DatagramPort Port number of sender as double
Error Type Error
Data.AbsTime day-month-year
hour:minute:second
Data.Message An error string

7-60

Events and Callbacks

Event Type Field Field Value
Output empty Type OutputEmpty
Data.AbsTime day-month-year
hour:minute:second
Timer Type Timer
Data.AbsTime day-month-year
hour:minute:second

The Data field values are described below.
AbsTime Field

AbsTime is defined for all events, and indicates the absolute time the event occurred.
The absolute time is returned using the MATLAB Command window clock format.
day-month-year hour:minute:second

DatagramAddress Field

DatagramAddress is the IP address of the datagram sender.

Datagramlength Field

DatagramLength is the length of the datagram in bytes.

DatagramPort Field

DatagramPort is the sender's port number from which the datagram originated.
Message Field

Message is used by the error event to store the descriptive message that is generated
when an error occurs.

Using Events and Callbacks

This example extends “UDP Communication Between Two Hosts” on page 7-14 to include
a datagram received callback. The callback function is instrcal lback, which displays
information to the command line indicating that a datagram has been received.

The following command configures the callback for the UDP object u2.

7-61

7 Controlling Instruments Using TCP/IP and UDP

u2.DatagramReceivedFcn = @instrcallback;

When a datagram is received, the following message is displayed.

DatagramReceived event occurred at 10:26:20 for the object:
UDP-doetom.dhpc.
25 bytes were received from address 192.168.1.12, port 8844.

Note: You cannot use ASCII values larger than 127 characters with fgetl, fgets, or
BytesAvailableFnc. The functions are limited to 127 binary characters.

7-62

Communicate Using TCP/IP Server Sockets

Communicate Using TCP/IP Server Sockets

In this section...

“About Server Sockets” on page 7-63

“Example” on page 7-63

About Server Sockets

Support for Server Sockets is available, using the NetworkRole property on the TCP/IP
interface. This support is for a single remote connection. You can use this connection to
communicate between a client and MATLAB, or between two instances of MATLAB.

For example, you might collect data such as a waveform into one instance of MATLAB,
and then want to transfer it to another instance of MATLAB.

Note: The use of the server socket on either the client or server side should be done in
accordance with the license agreement as it relates to your particular license option and
activation type. If you have questions, you should consult with the administrator for your
license or your legal department.

This 1s intended for use behind a firewall on a private network.

Note that while a server socket is waiting for a connection after calling fopen, the
MATLAB processing thread is blocked. To stop Fopen or to stop listening for connections,
and restore the use of MATLAB, type Ctrl+C at the MATLAB command line.

Example

To use this feature it is necessary to set the NetworkRole property in the tcpip
interface. It uses two values, client and server, to establish a connection as the client
or the server. The server sockets feature supports binary and ASCII transfers.

The following example shows how to connect two MATLAB sessions on the same
computer, showing the example code for each session. To use two different computers,
replace "localhost” with the IP address of the server in the code for Session 2. Using
'0.0.0.0" as the IP address means that the server will accept the first machine that tries

7-63

7 Controlling Instruments Using TCP/IP and UDP

to connect. To restrict the connections that will be accepted, replace "0.0.0.0" with the
address of the client in the code for Session 1.

Session 1: MATLAB Server

Accept a connection from any machine on port 30000.

t = tcpip("0.0.0.0", 30000, "NetworkRole®, "server®);

Open a connection. This will not return until a connection is received.
fopen(t);

Read the waveform and confirm it visually by plotting it.

data = fread(t, t.BytesAvailable);
plot(data);

Session 2: MATLAB Client
This code is running on a second copy of MATLAB.

Create a waveform and visualize it.

data = sin(1:64);
plot(data);

Create a client interface and open it.

t = tepip(Tlocalhost™, 30000, "NetworkRole®, "client”);
fopen(t)

Write the waveform to the server session.

fwrite(t, data)

7-64

Controlling Instruments Using
Bluetooth

* “Bluetooth Interface Overview” on page 8-2

+ “Configuring Bluetooth Communication” on page 8-3

+ “Transmitting Data Over the Bluetooth Interface” on page 8-10

* “Using Bluetooth Interface in Test & Measurement Tool” on page 8-14
+ “Using Events and Callbacks with Bluetooth” on page 8-15

+ “Bluetooth Interface Usage Guidelines” on page 8-16

8 Controlling Instruments Using Bluetooth

Bluetooth Interface Overview

8-2

In this section...

“Bluetooth Communication” on page 8-2

“Supported Platforms for Bluetooth” on page 8-2

Bluetooth Communication

The Instrument Control Toolbox Bluetooth interface lets you connect to devices over
the Bluetooth interface and to transmit and receive ASCII and binary data. Instrument
Control Toolbox supports the Bluetooth Serial Port Profile (SPP). You can identify any
SPP Bluetooth device and establish a two-way connection with that device.

Bluetooth is an open wireless technology standard for exchanging data over short
distances using short wavelength radio transmissions from fixed and mobile devices
using a packet-based protocol. Bluetooth provides a secure way to connect and exchange
information between devices such as Lego Mindstorm NXT robots, USB Bluetooth
adaptors (dongles), wireless sensors, mobile phones, faxes, laptops, computers, printers,
GPS receivers, etc.

Specifications about the Bluetooth standard are at the web site of the Bluetooth Special
Interest Group:

https://www.bluetooth.com/specifications/adopted-specifications

Supported Platforms for Bluetooth

The Bluetooth interface is supported on these platforms:

+ MacOSX
* Microsoft Windows 64-bit

https://www.bluetooth.com/specifications/adopted-specifications

Configuring Bluetooth Communication

Configuring Bluetooth Communication

In this section...

“Discovering Your Device” on page 8-3
“Viewing Bluetooth Device Properties” on page 8-5

Discovering Your Device

Instrument Control Toolbox can communicate with Bluetooth devices via an adaptor.

In this example, a USB Bluetooth adaptor is plugged into the computer. It can identify
Bluetooth devices within range when queried. In order to communicate with instruments,
you need to perform a pairing in the adaptor software. Note that some devices, such as
many laptop computers, do not need to use an adaptor since they have one built in.

The following shows the software interface of an adaptor where two of the devices in
range have been paired — a smart phone with Bluetooth enabled, and a Lego Mindstorm
NXT robot. As you can see, the “friendly name” or display name of the smart phone

is simply 1Phone and the name of the NXT robot is C3PO. In the Instrument Control
Toolbox this friendly name is the Bluetooth RemoteName property.

P

I\,/”\,_..f’l ™% ¢ Devices and Printers » Bluetooth Devices

Add a device Add a printer

4 Devices (2]

C3P0O iPhone

8-3

8 Controlling Instruments Using Bluetooth

8-4

To see the devices in the Instrument Control Toolbox, use the instrhwinfo function on
the Bluetooth interface, called Bluetooth.

»» instrhwinfo('BElustooth')
ans =

EemoteMNames: {5xl cell}
EemotelIDls: {5x1 cell}
BluecoveVersion: 'BlueCove-2.1.1-5NAPSHOT®
JarFileVersion: 'Version 3.0.0°

>» b = instrhwinfo ('BElustooth'}
b:

EemoteNames: {5x1 cell}

EemotelIDls: {5x1 cell}

BluecoveVersion: 'BlueCove-2.1.1-SHAPSHOT®
JarFileVersion: '"Version 32.0.0"

instrhwinfo returned a cell array of five Bluetooth devices that are in the range of the
adaptor on the computer running Instrument Control Toolbox. Then indexing into the
RemoteNames property shows the five devices. You can see that iPhone and C3PO are
shown in the list.

»>» b.RemoteNames
ans =

'"iPhone"
'mprocopi-maci'
"C3PO!

'"Emnmlator"

Configuring Bluetooth Communication

Notice that one of the other devices shows an empty character vector for RemoteName.
That means that device does not have a friendly name associated with it. To
communicate with that device, you need to use the RemotelD property.

»» b.RemotelDs
ans =

'EOFE4T7DTT3E4"
'001FSEDCE1SE"
'0016530FDEe3D"
'0021BAT4AF3IDD!
'00000000000"

The RemotelDs are shown in the same order as the RemoteNames, so the fourth ID in
the list, "0021BA74F3DD", could be used for the device that shows no RemoteName. You
can use either RemoteName or RemotelD to communicate with a device.

Examples of communicating with a device are in “Transmitting Data Over the Bluetooth
Interface” on page 8-10.

Viewing Bluetooth Device Properties

This example looks at the NXT robot discovered in the previous section. Using the
instrhwinfo function on the specific device using RemoteName shows this:

»» instrhwinfo ("Eluetooth', "C3FC")
ans =

EemoteHame: "C3IFO"
DeviceID: "O0016530FD&3D'
ChijectConstructorName: {'Bluetooth('C3P0O', 1):'}
Channel=s: {'1"'}

8 Controlling Instruments Using Bluetooth

If you use the instrhwinfo function on the specific device using the RemotelD, it shows

the following:

ChijectConstructorHame:
Channels:

»>» instrhwinfo ('EBEluetooth', "0016530FD&3D")
ans =
EemoteName: 'C3PO!'
DevicelID: 'O01&6530FD&3D!

{'Bluetooth('btspp://0016530FD&3D", 1);'}
{'1':

In the case using the RemotelD, you can see that the ObjectConstructorName is
actually the device’s Uniform Resource Identifier (URI).

Whether you use the RemoteName or the RemotelD to see the device’s properties, you
can see that the device has only one channel. Create a Bluetooth object bt using the
RemoteName and Channel. Then display the state of that object using the disp function.

Configuring Bluetooth Communication

>» bt = Bluetooth('C3P0',
»» disp (bt):

Communication Settings
Eemotelame :
RemoteIDl:

Channel:
Terminator:

Communication State
Status:
EecordStatus:

Bead,/Write State
TransferStatus:
ByvtesAvailable:
ValuesReceived:
ValuesSent:

1):

Bluetooth Cbhject : Bluetooth-C3P0:1

C3FC
001e530FDe3D
1

I]'_FI

closed
off

idle

The status 1s closed because you have not yet opened the connection to the object.

Use the get function to see the device properties.

8-7

8 Controlling Instruments Using Bluetooth

»>> get(bt)
ByteOrder = littleEndian
BytesAvailable = 0
ByvtesfAvailableFcn =
BytesAvailableFcnCount = 48
BytesAvailableFonMode = terminator
BytesToCucput = 0
ErrorFcn =
InputBufferSize = 512
Hame = Bluetooth-C3P0:1
ChbjectWVi=ibility = on

512

CutputBufferSize
CutputEmptyFen =
EecordDetail = compact
EecordMode = overwrite

Eecordiame record.CXC

EecordS5tatus = off

Status = closed
Tag =

Timeout = 10
TimerFcn =

TimerPeriod = 1
TransferStatus = idle
Tyvpe = bluetooth
UzerData = []
ValuesReceived = 0
ValuesSent = 0

BLUETOOTH specific properties:

Channel = 1
Profile = S5PP
Eeadfs=syvncHode = continuous

EemotelID = 001&6530FD&3D
EemoteNams = C3P0
Terminator = LF

8-8

Configuring Bluetooth Communication

The BLUETOOTH specific properties section shows properties that are specific to
the Bluetooth interface. You can see it is using channel 1. The profile is SPP, which
1s the Serial Port Profile — that is the Bluetooth profile that Instrument Control Toolbox
supports.

The RemoteName and RemotelD properties are the names that are used to communicate
with the device, as shown previously.

The ReadAsyncMode and Terminator properties are the same as the Serial Port
properties of the same name. For details, see the properties documentation.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

8 Controlling Instruments Using Bluetooth

Transmitting Data Over the Bluetooth Interface

8-10

You can read and write both text data (ASCII based) and binary data. For text data,
use the fscanf and fprintf functions. For binary data, use the fread and fwrite

functions.

This example uses the LEGO Mindstorm NXT robot with a RemoteName of C3PO that
you discovered in “Viewing Bluetooth Device Properties” on page 8-5. See that section for

more details on device discovery and viewing properties.

To communicate with the NXT device:

1 Determine what Bluetooth devices are accessible from your computer.

instrhwinfo("Bluetooth®)

2 View the device list using the RemoteNames property.

ans.RemoteNames

3 In this case, C3PO is the remote name of the NXT robot and is shown in the output.
Display the information about this device using the Bluetooth interface and the

RemoteName property.

instrhwinfo("Bluetooth”, "C3P0")

The Instrument Control Toolbox displays the device information.

ChjectConstructorName:
Channels:

»» instrhwinfo ("'Eluetooth', "C3FO")
ans =
EemotelName: "C3PO'
DeviceID: 'OO0l&S530FD&3D!

{'Bluetooth ("C3PC", 1):'}
{'1'}

4 Create a Bluetooth object called bt using channel 1 of the NXT device.

bt = Bluetooth("C3P0O", 1);
5 Connect to the device.

Transmitting Data Over the Bluetooth Interface

fopen(bt)
6 Send a message to the remote device using the fwrite function.
In this example, specific characters are sent to the device that this particular device

(the NXT robot C3P0) understands. You can write to the device, then query the
object, as shown here, to see that the values were sent.

»> fwrite(bt, wint8([2,0,1,155]1));
>> bt

Bluetooth Cbject : Bluetooth-C3P0:1

Communication Settings

Remotelame : C3IPC
RemotelID: 0016530FDA3D
Channel: 1
Terminator: 'LE!

Communication State
Status: open
RecordStatus: off

FEead/Writce State

TransferStatus: idle
Byvteshvailable: 35
ValuesReceived: o]
ValuesS5ent: 4

7 Read data from the remote device using the fread function.
You can see that ValuesSent is 4, which are the four characters sent in fwrite
(2,0,1,155). This also shows that 35 bytes are available. So you can then use the

fread function and give it 35 bytes to read the characters from the remote device.

»>» name = fread(bt,35):;

8-11

8 Controlling Instruments Using Bluetooth

8-12

>» char(name (6:10) ")

ans =

C3EBC

The device returns the characters shown here. The returned characters are C3PO,
which is the RemoteName of the device. That was a reply to the instructions that
were sent to it. See the documentation for your device for this type of device-specific
communication information.

8 Clean up by deleting and clearing the object.

fclose(bt);
clear("bt");

Note: This example uses the fread and fwrite functions. To read and write text-based
data, use the fscanf and fprintf functions.

Note: You can do asynchronous reading and writing of data using the Bluetooth
interface. This is similar to the same operations using the Instrument Control Toolbox
Serial interface. For more information, see “Asynchronous Write and Read Operations”
on page 6-20.

Transmitting Data Over the Bluetooth Interface

Other Functionality

The following functions can be used with the Bluetooth object.

Function Purpose

binblockwrite Write binblock data to instrument

fgetl Read line of text from instrument and discard terminator
flushinput Remove data from input buffer

fopen Connect interface object to instrument

fread Read binary data from instrument

fwrite Write binary data to instrument

methods Class method names and descriptions

readasync Read data asynchronously from instrument

scanstr Read data from instrument, format as text, and parse
binblockread Read binblock data from instrument

fclose Disconnect interface object from instrument

fgets Read line of text from instrument and include terminator
flushoutput Remove data from output buffer

fprintf Write text to instrument

fscanf Read data from instrument, and format as text

query Write text to instrument, and read data from instrument
record Record data and event information to file

stopasync Stop asynchronous read and write operations

For more information about these functions, see the functions documentation.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,

see “Using Tab Completion for Functions” on page 3-10.

8-13

8 Controlling Instruments Using Bluetooth

Using Bluetooth Interface in Test & Measurement Tool

8-14

The Bluetooth interface is supported for use in the Test & Measurement Tool. The same
functionality is available there as in the core toolbox, as described in “Bluetooth Interface
Overview” on page 8-2.

To use the Bluetooth support in the Test & Measurement Tool, select the Bluetooth
node in the instrument tree and right-click Scan for bluetooth devices. For help on
using it in the Test & Measurement Tool, see the Help within the tool by selecting the
Bluetooth node in the tree and reading the Help panel.

Note: When using the Bluetooth support in the Test & Measurement Tool, please note
that you may need to restart your device after you have done the scan. For any Lego
Mindstorm robot to be identified correctly, it has to be restarted after scanning. You may
also have to restart other Bluetooth devices after the scan as well.

Troubleshooting

If you are having trouble using the Bluetooth interface in the Test & Measurement Tool,
try these steps.

* Check that the Bluetooth device supports the Serial Port Profile (SPP). We do not
support other Bluetooth profiles such as File Transfer Profile (FTP).

+ Make sure that the Bluetooth service on the device is turned on.

* Make sure that the Bluetooth device is paired with your computer.

+ If you are using a Lego Mindstorm NXT brick, note that the NXT brick has to be
restarted after scanning for Bluetooth devices from the Test & Measurement Tool.

+ If you still cannot connect to the Bluetooth device, try unplugging and replugging the
Bluetooth adaptor.

Note: For further information on using the Bluetooth interface, see “Bluetooth Interface
Usage Guidelines” on page 8-16.

Using Events and Callbacks with Bluetooth

Using Events and Callbacks with Bluetooth

You can enhance the power and flexibility of your instrument control application by
using events. An event occurs after a condition is met, and might result in one or more
callbacks.

While the instrument object is connected to the instrument, you can use events to display
a message, display data, analyze data, and so on. Callbacks are controlled through
callback properties and callback functions. All event types have an associated callback
property. Callback functions are MATLAB functions that you construct to suit your
specific application needs.

You execute a callback when a particular event occurs by specifying the name of the
callback function as the value for the associated callback property.

The Bluetooth event types and associated callback properties are described below.

Event Type Associated Property Name

Bytes-available BytesAvai lableFcn
BytesAvai lableFcnCount

BytesAvai lableFcnMode

Error ErrorFcn

Output-empty OutputEmptyFcn

Timer TimerFcn
TimerPeriod

These are the same callbacks that are commonly used by other interfaces in the
Instrument Control Toolbox.

8-15

8 Controlling Instruments Using Bluetooth

Bluetooth Interface Usage Guidelines

8-16

These guidelines may be relevant to your use of this feature.

On Windows 7 64-bit platforms, you can use only one Bluetooth adaptor at a time. If you
connect another adaptor, it will fail with a “Device Driver Installation Failed” error.

Some adaptors support multiple devices:

* The Bluetooth adaptor that comes with the LEGO Mindstorm kit (Abe — Model:
UB22S) supports connection to only one Bluetooth device at a time.

+ 10 Gear — Models GBU421 and GBU311 support communication with multiple
Bluetooth devices.

* Targus — Model ACB10US supports communication with multiple Bluetooth devices.

* Motorola — Model SYN1244B supports communication with multiple Bluetooth
devices.

+ D-Link — Model DBT-120 supports communication with multiple Bluetooth devices.

If a Bluetooth adaptor is removed and a different one plugged in, all Bluetooth devices
have to be paired again with your PC. If the same adaptor is removed and plugged back
in, then you do not need to pair the devices again. If another adaptor of the same vendor
1s plugged in, then the devices which had been cached when that adaptor was used are
seen in the cache.

If a Bluetooth device is already cached, but it is OFF when MATLAB is started, and if
instrhwinfo is called on this device, then ObjectConstructorName and Channel

are returned as a null character vector. If a Bluetooth device is already cached and is ON
when MATLAB is started, and it is later switched OFF, if instrhwinfo is called on this
device, then ObjectConstructorName and Channel return the correct values.

If you create a Bluetooth object for any Bluetooth device and the connection is open, and
then the device goes out of range, then the status of the object would still be open. When
the device comes into range again, you need to fclose the object and fopen it again for
communication to continue.

If you create a Bluetooth object, for a Lego Mindstorm NXT robot for example, and the
connection is open, and then the batteries of robot run out, then the status of the object
would still be open. If you then replace the batteries, you need to fclose the object and
fopen it again for communication to continue.

Bluetooth Interface Usage Guidelines

When using the Bluetooth support in the Test & Measurement Tool, please note that you
may need to restart your device after you have done the scan. For any Lego Mindstorm
robot to be identified correctly, it has to be restarted after scanning. You may also have to
restart other Bluetooth devices after the scan as well.

8-17

Controlling Instruments Using 12C

+ “I2C Interface Overview” on page 9-2

* “Configuring 12C Communication” on page 9-4

* “Transmitting Data Over the I2C Interface” on page 9-9
* “Using Properties on an I12C Object” on page 9-15

+ “I2C Interface Usage Requirements and Guidelines” on page 9-18

9 Controlling Instruments Using 12C

12C Interface Overview

9-2

In this section...

“I2C Communication” on page 9-2
“Supported Platforms for I2C” on page 9-2

12C Communication

12C, or Inter-Integrated Circuit, is a chip-to-chip interface supporting two-wire
communication. Instrument Control Toolbox I2C support lets you open connections with
individual chips and to read and write over the connections to individual chips.

The Instrument Control Toolbox I2C interface lets you do chip to chip communication
using an Aardvark or NI-845x host adaptor. Some applications of this interface include
communication with SPD EEPROM and NVRAM chips, communication with SMBus
devices, controlling accelerometers, accessing low-speed DACs and ADCs, changing
settings on color monitors using the display data channel, changing sound volume in
intelligent speakers, reading hardware monitors and diagnostic sensors, visualizing data
sent from an I2C sensor, and turning on or off the power supply of system components.

The primary use cases involve the fread and fwrite functions. To identify I12C devices
in the Instrument Control Toolbox, use the instrhwinfo function on the I2C interface,
called i2c.

Supported Platforms for 12C

You need to have either a Total Phase Aardvark host adaptor or a NI-845x adaptor board
installed to use the 12c interface. The following sections contain the supported platforms
for each option.

12C Interface Overview

Using Aardvark

The I2C interface is supported on these platforms when used with the Aardvark host
adaptor:

* Linux — The software works with Red Hat Enterprise Linux 4 and 5 with kernel 2.6.
It may also be successful with SuSE and Ubuntu distributions.

+ Mac OS X 64-bit — The software is supported on Intel versions of Mac OS X 10.5
Leopard and 10.6 Snow Leopard.

* Microsoft Windows 64-bit
Using NI-845x

The I12C interface is supported on these platforms when used with the NI-845x host
adaptor:

* Microsoft Windows 64-bit

9-3

9 Controlling Instruments Using 12C

Configuring 12C Communication

9-4

You need to have either a Total Phase Aardvark host adaptor or a NI-845x adaptor board
installed to use the §12c interface. The following sections describe configuration for each
option.

Configuring Aardvark

To use the I12C interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I12C/SPI Interface Support Package” on page 15-15.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must be
available in one of the following locations for use on Windows platforms.

* The location where MATLAB was started from (Bin folder).
+ The MATLAB current folder (PWD).

* The Windows folder C:\winnt or C:\windows.

* The folders listed in the PATH environment variable.

Ensure that the Aardvark adaptor is installed properly.

-

¥>» instrhwinfo({'iZc')
ans =

In=stalledidaptors: 'Aardvark!'
JarFileVersion: 'Version 3.0.0°'

Configuring 12C Communication

Look at the adaptor properties.
instrhwinfo("i2c", “Aardvark®")
ans =

AdaptorDIIName: [1x127 char]
AdaptorDIlVersion: "Version 3.0.0°
AdaptorName: “aardvark®
InstalledBoardlds: O
ObjectConstructorName: "i2c("aardvark®, Boardlndex, RemoteAddress);*
VendorDlIName: "aardvark.dll®
VendorDriverDescription: "Total Phase 12C Driver®

You can create an I12C object using the 12c¢ function. The example in the next section
uses an I12C object called eeprom that communicates to an EEPROM chip.

eeprom = i2c("aardvark”,0,hex2dec("50"));

You can then display the object properties.

9 Controlling Instruments Using 12C

*» disp(eeprom)

I2C Cbject : IZ2C-0-50h

Communication Settings

BoardIndex

BoardSerial 2237482577
BitRate: 100
Remotelddress: S50h
Vendor: aardvark

Communication State
Status: open
RecordStatus: off

FEead/Write State

TransferStatus: idle
ByteshAvailable: 0
ValuesReceived: 1a
ValuesSent: 15

You can see that the communication settings properties reflect what was used to create
the object — BoardIndex of 0 and RemoteAddress of 50h. For information about other
properties, see “Using Properties on an I12C Object” on page 9-15.

Configuring NI-845x

To use the I12C interface with the NI-845x adaptor, you must download the Hardware
Support Package to obtain the latest driver, if you do not already have the driver
installed. If you already have the latest driver installed, you do not need to download this
Support Package.

If you do not have the NI-845x driver installed, see “Install the NI-845x I2C/SPI
Interface Support Package” on page 15-14.

Ensure that the NI-845x adaptor is installed properly.

Configuring 12C Communication

»» instrhwinfo('iZc')

ans =

Inatalledbdaptors:
JarFileVersion:

{'Aardwvark!'
"WVersion 3.4°

Look at the NI-845x adaptor properties.

'HNIg45x"}

>» instrhwinfo("iz2c’ "HIZ45x")
ans =
AdaptorDl1Name: [1x120 char]
LdaptorDllVer=zion: '"Verzion 3.4°"
LdaptorName: "NIS45x'
BoardId=sInUse: [1x0 double]
InstalledBoardIDs: O

DetectedBoardSerials:
ChijectConstructorHName:
VendorDl1Name :
VendorDriverDescription:

{'0180D474 (BoardIndex: 0)'}

'iZ2c ("HI84E5x'"'", BoardIndex, ERemotelddress);'
'Hig45x.d11"

'National Instruments NI USE 845x Driver!'

You can create an I12C object using the 12c¢ function.

i2cobj = 12c("NI1845x", 0, "10h");

You can then display the object properties.

9-7

9 Controlling Instruments Using 12C

»» disp(iZcobij)

I2C Object : IZ2C-0-10h

Communication Settings

BoardIndex 0
BoardSerial 01800474
BitRate: 100 kH=z
Eemotelddress: 10h
Vendor: HIZ45=x

Communication State
Status=: closed
EecordStatus: off

Eead/Write State
TransferStatus: idle

You can see that the communication settings properties reflect what was used to create
the object — BoardIndex of 0 and RemoteAddress of 10h. For information about other
properties, see “Using Properties on an I12C Object” on page 9-15.

9-8

Transmitting Data Over the 12C Interface

Transmitting Data Over the 12C Interface

The typical workflow involves adaptor discovery, connection, communication, and
cleanup. Discovery can be done only at the adaptor level. You need to have either a
Total Phase Aardvark host adaptor or a NI-845x adaptor board installed to use the 12c
interface.

Aardvark Example

This example shows how to communicate with an EEPROM chip on a circuit board, with
an address of 50 hex and a board index of 0, using the Aardvark adaptor.

To communicate with an EEPROM chip:

1 Ensure that the Aardvark adaptor is installed so that you can use the 12c¢ interface.
instrhwinfo("i2c")

>» instrhwinfo('iZc')
ans =

Inztalledidaptors: 'Aardwvark'
JarFileVer=sion: 'Version 32.0.0"

2 Look at the adaptor properties.
instrhwinfo("i2c", “Aardvark®)

ans =

AdaptorDlIName: [1x127 char]
AdaptorDIIVersion: "Version 3.0.0°
AdaptorName: “aardvark”
InstalledBoardlds: O
ObjectConstructorName: "i2c("aardvark®, BoardIndex, RemoteAddress);"”
VendorDIIName: "aardvark.dll*®
VendorDriverDescription: "Total Phase 12C Driver”®

Make sure that you have the Aardvark software driver installed and that the
aardvark.dll is on your MATLAB path. For details, see “I2C Interface Usage
Requirements and Guidelines” on page 9-18.

9 Controlling Instruments Using 12C

9-10

Create the I12C object called eeprom, using these properties:
% Vendor = aardvark

% BoardIndex = 0O

% RemoteAddress = 50h

eeprom = i2c("aardvark®,0,"50h");

You must provide these three parameters to create the object. Read the
documentation of the chip in order to know what the remote address is.

Tip: You can also see what the remote address of the chip is by scanning for
instruments in the Test & Measurement Tool. In the tool, right-click the I12C node
and select Scan for I12C adaptors. Any chips found by the scan is listed in the
hardware tree. The listing includes the remote address of the chip.

Connect to the chip.

fopen(eeprom);

Write "Hello World! " to the EEPROM. Data is written page-by-page in I2C. Each
page contains eight bytes. The page address needs to be mentioned before every byte
of data written.

The first byte of the string "Hello World!" is "Hello Wo". Its page address is O.
fwrite(eeprom,[0 "Hello Wo"]);
The second byte of the string "Hello World!" is "rild!". Its page address is 8.

fwrite(eeprom,[8 “rid!"]);
Read data back from the chip using the fread function.

A zero needs to be written to the 12c object, to start reading from the first byte of
first page.

fwrite(eeprom,0);
char(fread(eeprom,16))"

The chip returns the characters it was sent, as shown here.

Transmitting Data Over the 12C Interface

»>» char(fread(eeprom,l16))"'
ans =

Hello World!

Clean up by deleting and clearing the object.

fclose(eeprom);

delete(eeprom);
clear(“eeprom®);

NI-845x Example

This example shows how to communicate with an Analog Devices® ADXL345 sensor

chip on a circuit board, using an address of 53 hex and a board index of 0 on a NI-845x
adaptor. In this case, the NI-845x adaptor board is plugged into the computer (via the
USB port), and a circuit board containing the sensor chip is connected to the host adaptor
board via wires. Note that the circuit has external pullups, as the NI-8451 adaptor used
in this example does not have internal pullups.

To communicate with a sensor chip:

1

Ensure that the NI-845x adaptor is installed so that you can use the §12c interface.

-

¥> instrhwinfo('iZc')
ans =

In=stalledAdaptors: {'Aardwvark' '"HIB45x"'}
JarFileVersion: 'Version 3.4°'

Look at the NI-845x adaptor properties.

9-11

9 Controlling Instruments Using 12C

9-12

»» instrhwinfo('iZc', '"NIZ4L5x')

LdaptorDl1lName: [1x120 char]
AdaptorDllVersion: 'Version 3.4'
BdaptorName: 'NIEB4Sx'

BoardId=sInU=se: [1x0 double]
InstalledBoardIDs: O

DetectedBoardSerials: {'0180D474A (BoardIndex: 0) '}
ChjectConstructorName: 'iZc ('NIS845x', BoardIndex, Remotelddress);°

VendorDllName: 'Nif845x.d1l"

VendorDriverDescription: 'National Instcruments NI USE B4L5x Driver'

Make sure that you have the NI-845x software driver installed. For details, see “I2C
Interface Usage Requirements and Guidelines” on page 9-18.

Create the 12C object called i2cobj, using these properties:
% Vendor = NI1845x

% Boardlndex = 0
» RemoteAddress = 53h

=SS

i2cobj = i2c("N1845x", 0, "53h");

You must provide these three parameters to create the object. Read the
documentation of the chip in order to know what the remote address is.

Tip: You can also see what the remote address of the chip is by scanning for
instruments in the Test & Measurement Tool. In the tool, right-click the I12C node
and select Scan for I12C adaptors. Any chips found by the scan is listed in the
hardware tree. The listing includes the remote address of the chip.

Connect to the chip.

fopen(i2cobj)

Write to the sensor chip. Read the documentation or data sheet of the chip in order
to know what the remote address is and other information about the chip. Usually
chip manufacturers provide separate read and write addresses. The adaptor boards

Transmitting Data Over the 12C Interface

only take one address (the read address) and handle conversions to read and write
addresses.

In this case, the chip’s device ID register is at address 0, so you need to write a 0 to
the chip indicating you would like to read or write to the register.

fwrite(i2cobj, 0)

6 Read data back from the chip’s device ID register using the fread function. Reading
1 byte of data returns the device ID registry. In the case of this chip, the read-only
device ID register value is 229. Therefore, that is what is returned when you send
the byte.

fread(i2cobj, 1)
ans =

229
7 Clean up by deleting and clearing the object.
fclose(i2cobj);
delete(i2cobj);
clear("i2cobj*);
Other Functionality

You can use these functions with the 12c object.

Function Purpose

fopen Connect interface object to instrument.

fread Read binary data from instrument.

fwrite Write binary data to instrument.

methods Names and descriptions of functions that can be used with 12c
objects.

fclose Disconnect interface object from instrument.

record Record data and event information to file.

propinfo Display instrument object property information.

For more information about these functions, see the functions documentation.

9-13

9 Controlling Instruments Using 12C

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

9-14

Using Properties on an 12C Object

Using Properties on an 12C Object

You can use the get function on the i2c object to see the available properties. In the
first example shown in “Transmitting Data Over the I2C Interface” on page 9-9, which

uses the Aardvark board, the syntax would be:

get(eeprom)

The following shows the output of the get from that example.

I2C specific properties:
BitRate = 100

BoardIndex = 0
BoardSerial = 2.23748e+08
PullupBesi=stors = both
Eemotelddress = 80
TargetPower = both
WVendor = aardwvark

For the example using a NI-845x board, as shown in the NI-845x section of “Configuring
I12C Communication” on page 9-4, you see the following output.

get(i2cobj)

I2C specific properties:
BitRate = 100
BoardIndex = 0
BoardSerial = 0180D47A
PullupResistors = both
Eemotelddress = 0
Vendor = NI8453x

Interface-specific properties that can be used with the 12c object include:

9-15

9 Controlling Instruments Using 12C

Property Description

BitRate Must be a positive, nonzero value specified in kHz. The
adaptor and chips determine the rate. The default is 100 kHz
for both the Aardvark and NI-845x adaptors.

TargetPower Aardvark only. Can be specified as none or both. The value

both means to power both lines, if supported. The value
none means power no lines, and is the default value.

Pul lupResistors

Can be specified as none or both. The value both enables
2k pullup resistors to protect hardware in the I12C device, if
supported. This is the default value.

Devices may differ in their use of pullups. The Aardvark
adaptor and the NI-8452 adaptor have internal pullup
resistors to tie both bus lines to VDD and can be
programmatically set. The NI-8451 does not have internal
pullup resistors that can be programmatically set, and so
require external pullups. Consult your device documentation
to ensure that the correct pullups have been used.

BoardSerial Unique identifier of the I2C master communication device.

Vendor Use to create 12c object. Must be set to aardvark, for use
with Aardvark adaptor, or N1845x for use with the NI-845x
adaptor.

BoardIndex Use to create 12c¢ object. Specifies the board index of the
hardware. Usually set to O.

RemoteAddress Use to create i2c object. Specifies the remote address of the

hardware. Specified as a character vector when you create
the 12c object. For example, to specify the remote address of
50 hex, use "50h".

Read the documentation of the chip in order to know what
the remote address is. You can also see what the remote
address of the chip is by scanning for instruments in the Test
& Measurement Tool. In the tool, right-click the I12C node
and select Scan for 12C adaptors. Any chips found by the
scan is listed in the hardware tree. The listing includes the
remote address of the chip.

9-16

Using Properties on an 12C Object

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

All the I2C interface-specific properties work for both adaptor boards, except for
TargetPower, which is Aardvark only.

The properties Vendor, BoardIndex, and RemoteAddress are used when you create the
object, as shown in “Transmitting Data Over the I12C Interface” on page 9-9. The property
BoardSerial is read-only. The BitRate, TargetPower, and Pul lupResistors
properties can be set at any time after the object is created.

After you create the I12C object, you can set properties on it, as follows:
i2cobj.BitRate = 75

In this case, 12cobj is the name of the object, and you are changing the BitRate from
the default of 100 kHz to 75 kHz.

The other two properties that you can set are character vectors, so they would be set as
follows:

i2cobj . "TargetPower®™ = "both"

In this case, 12cobj is the name of the object, and you are changing the TargetPower
from the default of none to both. Note that TargetPower is only available using the
Aardvark board, and does not apply to the NI-845x board.

9-17

9 Controlling Instruments Using 12C

12C Interface Usage Requirements and Guidelines

9-18

The I2C interface does not support asynchronous behavior. Therefore, functions such
as Fprintf, fscanf, and query do not work. Use fread and fwrite to communicate
using this interface.

You need to have either a Total Phase Aardvark host adaptor or a NI-845x adaptor board
installed to use the 12c interface. The following sections describe requirements for each
option.

Aardvark-specific Requirements

To use the I2C interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I12C/SPI Interface Support Package” on page 15-15.

You must install the Aardvark Software API and Share Library appropriate for your
operating system.

The aardvark.dll file that comes with the Total Phase Aardvark adaptor board must be
available in one of the following locations for use on Windows platforms.

* The location where MATLAB was started from (Bin folder).

+ The MATLAB current folder (PWD).

* The Windows folder C:\winnt or C:\windows.

* The folders listed in the PATH environment variable.

The aardvark.so file that comes with the Total Phase Aardvark adaptor board must be in
your MATLAB path for use on Linux platforms.

If you repower your Aardvark board, set the GPIO pins to output to get communication
with a device to work. By default they are configured as input.

NI-845x-specific Requirements

To use the I2C interface with the NI-845x adaptor, you must download the Hardware
Support Package to obtain the latest driver, if you do not already have the driver

12C Interface Usage Requirements and Guidelines

installed. If you already have the latest driver installed, you do not need to download this
Support Package.

If you do not have the NI-845x driver installed, see “Install the NI-845x I12C/SPI
Interface Support Package” on page 15-14.

Devices may differ in their use of pullups. The NI-8452 has internal pullup resistors

to tie both bus lines to VDD and can be programmatically set. The NI-8451 does not
have internal pullup resistors that can be programmatically set, and so require external
pullups. Consult your device documentation to ensure that the correct pullups have been
used.

9-19

Controlling Instruments Using SPI

+ “SPI Interface Overview” on page 10-2

+ “Configuring SPI Communication” on page 10-4

* “Transmitting Data Over the SPI Interface” on page 10-9

+ “Using Properties on the SPI Object” on page 10-18

+ “SPI Interface Usage Requirements and Guidelines” on page 10-22

10 Controlling Instruments Using SPI

SPI Interface Overview

10-2

In this section...

“SPI Communication” on page 10-2

“Supported Platforms for SPI” on page 10-2

SPI Communication

SPI, or Serial Peripheral Interface, is a synchronous serial data link standard that
operates in full duplex mode. It is commonly used in the test and measurement field.
Typical uses include communicating with micro controllers, EEPROMs, A2D devices,
embedded controllers, etc.

Instrument Control Toolbox SPI support lets you open connections with individual chips
and to read and write over the connections to individual chips using an Aardvark or
NI-845x host adaptor.

The primary uses for the spi interface involve the write, read, and writeAndRead
functions for synchronously reading and writing binary data. To identify SPI devices in
Instrument Control Toolbox, use the instrhwinfo function on the SPI interface, called
spi.

Supported Platforms for SPI

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the spi interface. The following sections contain the supported
platforms for each option.

Using Aardvark

The SPI interface is supported on these platforms when used with the Aardvark host
adaptor:

* Linux — Red Hat® Enterprise Linux 4 and 5 with kernel 2.6, and possibly SUSE® and
Ubuntu distributions.

* Mac OS X 64-bit — Intel® versions of Mac OS X 10.5 Leopard, 10.6 Snow Leopard,
10.7 Lion, and 10.8 Mountain Lion.

* Microsoft Windows 64-bit

SPI Interface Overview

Using NI-845x

The SPI interface is supported on these platforms when used with the NI-845x host
adaptor:

* Microsoft Windows 64-bit

10-3

10 Controlling Instruments Using SPI

Configuring SPI Communication

10-4

You must have a Total Phase Aardvark host adaptor or an NI-845x adaptor board
installed to use the spi interface.

Configuring Aardvark

To use the SPI interface with the Aardvark adaptor, you must download the Hardware

Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-15.

The aardvark.dl 1 file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

* The location where MATLAB was started from (bin folder)
* The MATLAB current folder (PWD)
* The Windows folder C:\winnt or C:\windows

* The folders listed in the path environment variable

Ensure that the Aardvark adaptor is installed properly.

>>» instrhwinfo('spi')
ans =

SupportedVendors: {'aardwvark'}
InstalledVendors: {'aardvark'}

Configuring SPI Communication

Look at the adaptor properties.
»>» instrhwinfo('spi' , 'Zardvark')
ans =

VendorName: 'aardwvark'
VendorDescription: 'Total Phase IZ2C/5PI Driver'
VendorLibraryName: 'aardvark.dll®
InatalledBoardld=s: {[0]}

BoardSerialMumbers: {'2237722838'}

ChjectConstructors: {'spi('aardvark', 0, 0)'}

Create a SPI object using the spi function. This example uses a SPI object called S that
communicates to an EEPROM chip. Create the object using the BoardIndex and Port
numbers, which are O in both cases.

S = spi(faardvark®, 0, 0);

10-5

10 Controlling Instruments Using SPI

10-6

Display the object properties.

»» di=sp(5)
SPI Chject

Ldapter Settings

BoardIndex: 4]
BoardSerial: 2237722838
VendorHName : aardvark

Communication Settings

BitRate: 1000000 H=
ChipSelect: 4]
ClockFhase: FirstEdge
ClockPolarity: IdleLow
Port: Q0

Communication State
ConnectionStatu=: Di=zconnected

FEead/Write State
TransferStatus: Idle

The communication settings properties reflect what was used to create the object —
BoardIndex of 0 and Port of 0. For information about other properties, see “Using
Properties on the SPI Object” on page 10-18.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Configuring NI-845x

To use the SPI interface with the NI-845x adaptor, download the hardware support
package to obtain the latest driver, if you do not already have the driver installed.

Configuring SPI Communication

If you do not have the NI-845x driver installed, see “Install the NI-845x 12C/SPI
Interface Support Package” on page 15-14 to install it.

Ensure that the NI-845x adaptor is installed properly.
»» instrhwinfo('spli')
anz =

HardwareInfo with properties:

SupportediVendors: {'aardwvark' "miB4Lx'}
InstalledVendors: {'mif4Lx'}

Look at the NI-845x adaptor properties.

»» instrhwinfo('spi', 'niZ4sSx")
ans =

HardwareInfo with properties:

VendorMName: 'nig4sx!
VendorDescription: 'National Instruments'
VendorLibraryName: 'NiS45x.dll'
InatalledBoardIds: {[0]}

BoardSerialNumbers: {'0183388B'}
ChbjectConstructors: {'spi('nif45x', 0, O) '}

Create a SPI object using the spi function. The example in the next section uses a SPI
object called s2 that communicates with an EEPROM chip. Create the object using the
BoardIndex and Port numbers, which are O in both cases.

s2 = spi("ni845x", 0, 0);

Display the object properties.

10-7

10 Controlling Instruments Using SPI

10-8

»>>»> diap(=a2)
S5PI Object

Adapter Settings
BoardIndex:
BoardSerial:
VendorName :

Communication Settings
BitRate:
ChipSelect:
ClockFPhase:
ClockPolarity:
Port:

Communication State
ConnectionStatus:

Eead/Write State
TransferStatus:

0
0183388E
nif4sx

1000000 H=
0
FirstEdge
IdleLow

4]

Disconnected

Idle

The communication settings properties reflect what was used to create the object —
BoardIndex of 0 and Port of 0. For information about other properties, see “Using
Properties on the SPI Object” on page 10-18.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

Transmitting Data Over the SPI Interface

Transmitting Data Over the SPI Interface

The typical workflow for transmitting data over the SPI interface involves adaptor
discovery, connection, communication, and cleanup. Discovery can be done only at the
adaptor level. You must have a Total Phase Aardvark adaptor or an NI-845x adaptor
board installed to use the spi interface.

Transmit Data Over SPI Using Aardvark

This example shows how to communicate with an EEPROM chip on a circuit board, with
a board index of 0 and using port O.

1 Ensure that the Aardvark adaptor is installed so that you can use the spi interface.

>» instrhwinfo('spli')
ans =

SupportedVendors: {'aardvark'}
InztalledVendors: {'aardvark'}

2 Look at the adaptor properties.

»» instrhwinfo('spli' , 'ARardvark')
ans =

VendorMName: 'aardvark'
VendorDescription: 'Total Phase IZC/S5PI Driver'
VendorLibraryName: 'aardvark.dll'
In=talledBoardId=s: {[0]}

BoardSeriallumbers: {"223T7T22838'}
ChjectConstructors: {'spi('aardvark', 0, 0)'}

10-9

10 Controlling Instruments Using SPI

10-10

Make sure that you have the Aardvark software driver installed and that the
aardvark.dll is on your MATLAB path. For details, see “SPI Interface Usage
Requirements and Guidelines” on page 10-22.

Create the SPI object called S, using these properties:
% Vendor = aardvark

t BoardIndex = O
% Port = 0O

=SS

S = spi(faardvark®, 0, 0);

You must provide these three parameters to create the object.

Look at the object properties.

Transmitting Data Over the SPI Interface

SPI Cbject

Adapter Settings

BoardIndex: 0
BoardSerial: 223TT22838
VendorName : aardvark

Communication Settings

BitRate: 1000000 H=
ChipSelect: 0
ClockPhase: FirstEdge
ClockPolarity: IdlelLow
Port: 0

Communication State
ConnectionStatus: Disconnected

Eead/Write State
TransferStatus: Idle

When you create the spi object, default communication settings are used, as shown
here. To change any of these settings, see “Using Properties on the SPI Object” on
page 10-18 for more information and a list of the properties.

Connect to the chip.

connect(S);

Read and write to the chip.

% Create a variable containing the data to write
dataToWrite = [3 0 0 0];

10-11

10 Controlling Instruments Using SPI

10-12

% Write the binary data to the chip
write(S, dataToWrite);

% Create a variable that contains the number of values to read
numData = 5;

% Read the binary data from the chip
data = read(S, numData);

Disconnect the SPI device and clean up by clearing the object.

disconnect(S);
clear("S");

Transmit Data Over SPI Using NI-845x

This example shows how to communicate with an EEPROM chip on a circuit board, with
a board index of 0 and using port 0.

1

Ensure that the NI-845x adaptor is installed so that you can use the spi interface.

»> instrhwinfo('"=spi")
ans =

HardwarelInfo with properties:

SupportedVendors: {'aardvark' "niB45x"}
InstalledVendors: {'nig4s5x'}

Look at the NI-845x adaptor properties.

Transmitting Data Over the SPI Interface

»» instrhwinfo('=spi', 'ni

(k]
I

n

B

ans =

HardwareInfo with properties:

VendorName: 'nig4sx’
VendorDescription: 'National Instruments'
VendorLibraryName: 'Nif45x.dll!
In=talledBoardId=s: {[0]}

BoardSerialNumbers: {'0183388B'}

ChjectConstructors: {'spi('ni84sx', 0, 0)'}

Make sure that you have the NI-845x software driver installed. For details, see “SPI
Interface Usage Requirements and Guidelines” on page 10-22.

Create the SPI object called s2, using these properties:

% Vendor = ni845x

% Boardlndex = 0O

% Port = O

s2 = spi("ni845x", 0, 0);

You must provide these three parameters to create the object.

Look at the object properties.

10-13

10 Controlling Instruments Using SPI

10-14

»> diap(=2)
SPI Cbhbject

Adapter Settings
BoardIndex:
BoardSerial:
VendorName :

Communication Settings
BitRate:
ChipSelect:
ClockFPhase:
ClockPolarity:
Port:

Communication State
ConnectionStatus=:

Eead/Write State
TransferStatus:

0
0183388B
nigf4sx

1000000 H=
0
FirstEdge
TdleLow

0

Dizconnected

Idle

When you create the spi object, default communication settings are used, as shown
here. To change any of these settings, see “Using Properties on the SPI Object” on
page 10-18 for more information and a list of the properties.

Connect to the chip.

connect(s2);

Read and write to the chip.

% Create a variable containing the data to write

dataToWrite = [3 0 0 0];

% Write the binary data to the chip

write(s2, dataToWrite);

% Create a variable that contains the number of values to read

Transmitting Data Over the SPI Interface

numData = 5;

% Read the binary data from the chip
data = read(s2, numData);

ans =

0 0 0 0 0
7 Disconnect the SPI device and clean up by clearing the object.

disconnect(s2);
clear("s2");

SPI Functions

You can use these functions with the spi object.

Note: SPI is a full duplex communication protocol, and data must be written in order to
read data. You can use the read function to write dummy data to the device. The write
function flushes the data returned by the device. The writeAndRead function does the
read and write together.

Function Purpose
instrhwinfo Check that the Aardvark and/or NI-845x adaptor is installed.

instrhwinfo("spi*®)

Look at the adaptor properties.

instrhwinfo("spi®, "Aardvark®)

instrhwinfo("spi”, "ni845x")

spiinfo Returns information about devices and displays the information on a
per vendor basis.

10-15

10 Controlling Instruments Using SPI

10-16

Function Purpose
info = spiinfo()

connect Connect the SPI object to the device. Use this syntax:
connect(spiObject);

read Synchronously read binary data from the device. To read data, first
create a variable, such as numData, to specify the size of the data to
read. In this case, create the variable to read 5 bytes. Then use the
read function as shown here, where spiObject is the name of your
object. This process is also shown in step 6 of the previous example.
The precision of the data 1s UINTS.
numData = 5;
read(spiObject, numData);
Or you can use this syntax:
A = read(spiObject, size)

write Synchronously write binary data to the device. To write data, first

create a variable, such as dataToWrite. In this case, create the
data [3 O O O]. Then use the write function as shown here, where
spiObject is the name of your object. This process is also shown in
step 6 of the previous example. The precision of the data written is
UINTS.

dataToWrite = [3 0 0 O];

write(spiObject, dataToWrite);

Transmitting Data Over the SPI Interface

Function Purpose

writeAndRead |Synchronously do a simultaneous read and write of binary data
with the device. In this case, the function synchronously writes the
data specified by the variable dataToWrite to the device in binary
format, then synchronously reads from the device and returns the
data to the variable data, as shown here, where spiObject is the
name of your object. The precision of the data written and read is
UINTS.

dataToWrite = [3 0 0 0];

data = writeAndRead(spiObject, dataToWrite)

disconnect Disconnect SPI object from the device. Use this syntax:

disconnect(spiObject);

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

10-17

10 Controlling Instruments Using SPI

Using Properties on the SPI Object

Use the properties function on the spi object to see the available properties. In the
preceding example, the syntax would be:

properties(S)

The following shows the output of the properties from the preceding example,
“Transmitting Data Over the SPI Interface” on page 10-9.

>> properties(S)
Properties for class instrument.interface.spi.aardvark.Spi:

BitRate
ClockPhase
ClockPolarity
ChipSelect

Port

BoardIndex
VendorName
BoardSerial
ConnectionStatus
TransferStatus

10-18

Using Properties on the SPI Object

You can use these interface-specific properties with the spi object.

Property

Description

BitRate

SPI clock speed. Must be a positive, nonzero value specified
in Hz. The default is 1000000 Hz for both the Aardvark and

NI-845x adaptors. To change from the default:

S_.BitRate = 400000

ClockPhase

SPI clock phase. Can be specified as "FirstEdge*” or
"SecondEdge*®. The default of "FirstEdge” is used if you
do not specify a phase.

ClockPhase indicates when the data is sampled. If set to
"FirstEdge”, the first edge of the clock is used to sample
the first data byte. The first edge may be the rising edge

(if ClockPolarity is set to " 1dleLow"), or the falling

edge (if ClockPolarity is set to " IdleHigh"). If set to
"SecondEdge”, the second edge of the clock is used to
sample the first data byte. The second edge may be the
falling edge (if ClockPolarity is set to "1dleLow"), or the
rising edge (if ClockPolarity is set to "1dleHigh").

To change from the default:

S.ClockPhase = "SecondEdge*"

ClockPolarity

SPI clock polarity. Can be specified as " 1dleLow” or
"IdleHigh". The default of " IdleLow" is used if you do not
specify a phase.

ClockPolarity indicates the level of the clock signal when
idle. "IdleLow™ means the clock idle state is low, and
"IdleHigh™ means the clock idle state is high.

To change from the default:

S.Polarity = "ldleHigh*

10-19

10 Controlling Instruments Using SPI

Property Description

ChipSelect SPI chip select line. The Aardvark adaptor uses O as the chip
select line since it has only one line, so that is the default and
only valid value.

Port Use to create spi object. Port number of your hardware,
specified as the number 0. The Aardvark adaptor uses O as
the port number when there is one adaptor board connected.
If there are multiple boards connected, they could use ports O
and 1. Specify port number as the third argument when you
create the spi object:

S = spi(faardvark®, 0, 0);

BoardSerial Unique identifier of the SPI communication device.

VendorName Use to create spi object. Adaptor board vendor, must be set
to "aardvark”, for use with Total Phase Aardvark adaptor
or "ni845x" for use with the NI-845x adaptor. Specify the
vendor as the first argument when you create the spi object:

S = spi(Caardvark®, 0, 0);

BoardIndex Use to create spi object. Specifies the board index of the
hardware. Usually set to 0. Specify board index as the second
argument when you create the spi object:

S = spi(faardvark®, 0, 0);

ConnectionStatus Returns the connection status of the SPI object. Possible
values are Disconnected (default) and Connected.

10-20

Using Properties on the SPI Object

Property Description

TransferStatus Returns the read/write operation status of the SPI object.
Possible values:

Idle (default) — The device is not transferring any data.
Read — The device is reading data.

Write — The device is writing data.

ReadWrite — The device is reading and writing data.

The properties all have defaults, as indicated in the table. You do not need to set a
property unless you want to change it to a different value from the default. Aside from
the three properties required to construct the object — VendorName, BoardIndex, and
Port — any other property is set using the .dot notation syntax:

<object_name>.<property_ name> = <value>

Here are a few examples of using this syntax.

Change the BitRate from the default of 1000000 to 500000 kHz
S.BitRate = 500000

Change the ClockPhase from the default of "FirstEdge® to "SecondEdge-
S.ClockPhase = "SecondEdge*

where S is the name of the object used in the examples.

Note: To get a list of options you can use on a function, press the Tab key after entering
a function on the MATLAB command line. The list expands, and you can scroll to choose
a property or value. For information about using this advanced tab completion feature,
see “Using Tab Completion for Functions” on page 3-10.

10-21

10 Controlling Instruments Using SPI

SPI Interface Usage Requirements and Guidelines

10-22

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the spi interface. The following sections describe requirements for
each option.

Aardvark-specific Requirements

To use the SPI interface with the Aardvark adaptor, you must download the Hardware
Support Package to obtain the necessary files. You must also download the USB device
driver from the vendor.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I12C/SPI Interface Support Package” on page 15-15.

Install the Aardvark Software API and Shared Library appropriate for your operating
system.

The aardvark.dl 1 file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

* Location where MATLAB was started from (bin folder)

* MATLAB current folder (PWD)

* Windows folder C:\winnt or C:\windows

+ Folders listed in the path environment variable

For use on Linux platforms, the aardvark.so file that comes with the Total Phase
Aardvark adaptor board must be in your MATLAB path.

NI-845x-specific Requirements

To use the SPI interface with the NI-845x adaptor, you must download the hardware
support package to obtain the latest driver, if you do not already have the driver
installed. If you already have the latest driver installed, you do not need to download this
support package.

If you do not have the NI-845x driver installed, see “Install the NI-845x 12C/SPI
Interface Support Package” on page 15-14 to install it.

Controlling Devices Using MODBUS

+ “MODBUS Interface Supported Features” on page 11-2

+ “Create a MODBUS Connection” on page 11-4

+ “Configure Properties for MODBUS Communication” on page 11-7

* “Read Data from a MODBUS Server” on page 11-11

+ “Read Temperature from a Remote Temperature Sensor” on page 11-16

+ “Write Data to a MODBUS Server” on page 11-18

+ “Write and Read Multiple Holding Registers” on page 11-21

+ “Modify the Contents of a Holding Register Using a Mask Write” on page 11-24

11 Controlling Devices Using MODBUS

MODBUS Interface Supported Features

In this section...
“MODBUS Capabilities” on page 11-2
“Supported Platforms for MODBUS” on page 11-2

MODBUS Capabilities

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial
RTU. You can use it to communicate with MODBUS servers, such as controlling a
PLC (Programmable Logic Controller), communicating with a temperature controller,
controlling a stepper motor, sending data to a DSP, reading bulk memory from a PAC
controller, or monitoring temperature and humidly on a MODBUS probe.

Using the MODBUS interface, you can do the following tasks, which correspond to the
MODBUS function codes listed in the table.

Functionality MODBUS Function Code
Read and write coils 1,5,15

Read discrete inputs 2

Read and write holding registers 3, 6,16

Read input registers 4

Perform mask writes on holding registers |22

Perform write/read (in one operation) on 23

holding registers

Supported Platforms for MODBUS

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial RTU.
It is supported on the following platforms.

Linux 64-bit
Mac OS X 64-bit
Microsoft Windows 64-bit

11-2

MODBUS Interface Supported Features

Note: The Instrument Control Toolbox MODBUS support works on the MATLAB
command line only. It is not available in the Test & Measurement Tool.

11-3

11 Controlling Devices Using MODBUS

Create a MODBUS Connection

11-4

Instrument Control Toolbox supports the MODBUS interface over TCP/IP or Serial
RTU. You can use it to communicate with MODBUS servers, such as a PLC. The typical
workflow is:

* Create a MODBUS connection to a server or hardware.

* Configure the connection if necessary.

* Perform read and write operations, such as communicating with a temperature
controller.

* Clear and close the connection.

To communicate over the MODBUS interface, you first create a MODBUS object using
the modbus function. Creating the object also makes the connection. The syntax is:

<objname> = modbus("Transport®, "DeviceAddress")

or

<objname> = modbus("Transport®, "Port")

You must set the transport type as either "tcpip” or "serialrtu” to designate the
protocol you want to use. Then set the address and port, as shown in the next sections.
You can also use name-value pairs in the object creation to set properties such as
Timeout and ByteOrder.

When you create the MODBUS object, it connects to the server or hardware. If the
transport is "tcpip”, then DeviceAddress must be specified. Port is optional and
defaults to 502 (reserved port for MODBUS). If the transport is "serialrtu”, then
"Port” must be specified.

Create Object Using TCP/IP Transport

When the transport is "tcpip”, you must specify DeviceAddress. This is the IP
address or host name of the MODBUS server. Port is the remote port used by the
MODBUS server. Port is optional and defaults to 502, which is the reserved port for
MODBUS.

This example creates the MODBUS object m using the device address shown and port of
308.

Create a MODBUS Connection

3
1l

modbus (" tcpip”,

"192.168.2.1", 308)

Modbus TCPIP with properties:

DeviceAddress:
Port:

Status:
NumRetries:
Timeout:
ByteOrder:
WordOrder:

Create Object Using Serial RTU Transport

"192.168.2.1"°
308

"open*

1

10 (seconds)
"big-endian*
"big-endian*

When the transport is "serialrtu”, you must specify "Port". This is the Serial port
the MODBUS server is connected to.

This example creates the MODBUS object m using the port of "COM3".

m

m =

Modbus Serial RTU with properties:

Port:
BaudRate:
DataBits:

Parity:
StopBits:
Status:
NumRetries:
Timeout:
ByteOrder:
WordOrder:

modbus(“serialrtu”,*COM3%)

"COom3*

9600

8

"none*

1

"open*

1

10 (seconds)
"big-endian*
"big-endian*

Create Object and Set a Property

You can create the object using a name-value pair to set the properties such as Timeout.
The Timeout property specifies the maximum time in seconds to wait for a response
from the MODBUS server, and the default is 10. You can change the value either during

object creation or after you create the object.

11-5

11 Controlling Devices Using MODBUS

For the list and description of properties you can set for both transport types, see
“Configure Properties for MODBUS Communication” on page 11-7.

This example creates a MODBUS object using Serial RTU, but increases the Timeout to
20 seconds.

m modbus(“serialrtu®,"COM3", "Timeout",20)

Modbus Serial RTU with properties:

Port: *"COM3*
BaudRate: 9600

DataBits: 8
Parity: "none*
StopBits: 1

Status: “open”
NumRetries: 1

Timeout: 20 (seconds)
ByteOrder: "big-endian®
WordOrder: "big-endian”

The output reflects the Timeout property change.

11-6

Configure Properties for MODBUS Communication

Configure Properties for MODBUS Communication

The modbus object has the following properties.

Property Transport Type |Description

"DeviceAddress® |TCP/IP only |IP address or host name of MODBUS server, for
example, "192.168.2.1". Required during object
creation if transport is TCP/IP.

m = modbus("tcpip®, "192.168.2.1%)

Port TCP/IP only |Remote port used by MODBUS server. The default
1s 502. Optional during object creation if transport
is TCP/IP.

m = modbus("tcpip®, "192.168.2.1", 308)

"Port* Serial RTU Serial port MODBUS server is connected to, for

only example, "COM1". Required during object creation
if transport is Serial RTU.
m = modbus("serialrtu®, "COM3%)
Timeout Both TCP/ Maximum time in seconds to wait for a response
IP and Serial |from the MODBUS server, specified as a positive
RTU value of type double. The default is 10. You can
change the value either during object creation, or
after you create the object.
m.Timeout = 30;
NumRetries Both TCP/ Number of retries to perform if there is no reply

IP and Serial
RTU

from the server after a timeout. If using the Serial
RTU transport, the message is resent. If using the
TCP/IP transport, the connection is closed and
reopened.

m.NumRetries = 5;

11-7

11 Controlling Devices Using MODBUS

Property Transport Type |Description
"ByteOrder* Both TCP/ Byte order of values written to or read from 16-bit
IP and Serial |registers. Valid choices are "big-endian® and
RTU "little-endian”. The default is "big-endian”,
as specified by the MODBUS standard.
m.ByteOrder = "little-endian”;
"WordOrder"* Both TCP/ Word order for register reads and writes that span
IP and Serial |multiple 16-bit registers. Valid choices are "big-
RTU endian” and "little-endian®. The default is
"big-endian”®, and it is device-dependent.
m.WordOrder = "little-endian”;
BaudRate Serial RTU Bit transmission rate for serial port
only communication. Default is 9600 bits per seconds,
but the actual required value is device-dependent.
m.Baudrate = 28800;
DataBits Serial RTU Number of data bits to transmit. Default is 8,
only which is the MODBUS standard for Serial RTU.
Other valid values are 5, 6, and 7.
m.DataBits = 6;
Parity Serial RTU Type of parity checking. Valid choices are "none*
only (default), "even”, "odd", "mark”, and "space”.

The actual required value is device-dependent. If
set to the default of none, parity checking is not
performed, and the parity bit is not transmitted.

m.Parity = "odd";

Configure Properties for MODBUS Communication

Property Transport Type |Description
StopBits Serial RTU Number of bits used to indicate the end of data
only transmission. Valid choices are 1 (default) and 2.

Actual required value is device-dependent, though
1 is typical for even/odd parity and 2 for no parity.

m.StopBits = 2;

Set a Property During Object Creation

You can change property values either during object creation or after you create the

object.

You can create the modbus object using a name-value pair to set a value during object

creation.

This example creates the MODBUS object and increases the Timeout to 20 seconds.

m

modbus(“serialrtu”,"COM3", "Timeout",20)

Modbus Serial RTU with properties:

Nu

W

Port:
BaudRate:
DataBits:

Parity:
StopBits:
Status:
mRetries:
Timeout:
ByteOrder:
ordOrder:

"COm3*

9600

8

"none*

1

"open*

1

20 (seconds)
"big-endian*
"big-endian*

The output reflects the Timeout property change from the default of 10 seconds to 20

seconds.

11-9

11 Controlling Devices Using MODBUS

Set a Property After Object Creation

You can change a property anytime by setting the property value using this syntax after
you have created a MODBUS object.

<object_name>._<property_name> = <property_value>
This example using the same object named m increases the Timeout to 30 seconds.

m = modbus(“serialrtu®,"COM3%);
m.Timeout = 30

This example changes the Parity from the default of none to even.

m = modbus(“serialrtu®,*COM3%);
m.Parity = “even~;

11-10

Read Data from a MODBUS Server

Read Data from a MODBUS Server

In this section...

“Types of Data You Can Read Over MODBUS” on page 11-11
“Reading Coils Over MODBUS” on page 11-11

“Reading Inputs Over MODBUS” on page 11-12

“Reading Input Registers Over MODBUS” on page 11-13
“Reading Holding Registers Over MODBUS” on page 11-13
“Specifying Server ID and Precision” on page 11-14

Types of Data You Can Read Over MODBUS

The read function performs read operations from four types of target-addressable areas:

* Coils

* Inputs

* Input registers

* Holding registers

When you perform the read, you must specify the target type (target), the starting
address (address), and the number of values to read (count). You can also optionally

specify the address of the server (serverld) for any target type, and the data format
(precision) for registers.

For an example showing the entire workflow of reading a holding register on a PLC, see
“Read Temperature from a Remote Temperature Sensor” on page 11-16.

Reading Coils Over MODBUS

If the read target is coils, the function reads the values from 1-2000 contiguous coils in
the remote server, starting at the specified address. A coil is a single output bit. A value
of 1 indicates the coil is on and a value of O means it is off.

The syntax to read coils is:

read(obj, "coils”,address,count)

11-11

11 Controlling Devices Using MODBUS

11-12

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the coils to read, and it is a double.
The count parameter is the number of coils to read, and it is a double. If the read is
successful, it returns a vector of doubles, each with the value 1 or O, where the first value
in the vector corresponds to the coil value at the starting address.

This example reads 8 coils, starting at address 1.
read(m, "coils”,1,8)
ans =

1 1 0 1 1 0 1 0
You can also create a variable to be read later.
data = read(m,"coils®,1,8)

data

1 1 0 1 1 0 1 0

Reading Inputs Over MODBUS

If the read target is inputs, the function reads the values from 1-2000 contiguous
discrete inputs in the remote server, starting at the specified address. A discrete input is
a single input bit. A value of 1 indicates the input is on, and a value of O means it is off.

The syntax to read inputs is:
read(obj, "inputs” ,address, count)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the inputs to read, and it is a double.
The count parameter is the number of inputs to read, and it is a double. If the read
operation is successful, it returns a vector of doubles, each with the 1 or O, where the first
value in the vector corresponds to the input value at the starting address.

Read Data from a MODBUS Server

This example reads 10 discrete inputs, starting at address 2.
read(m, "inputs”,2,10)

ans =

Reading Input Registers Over MODBUS

If the read target is input registers, the function reads the values from 1-125 contiguous
input registers in the remote server, starting at the specified address. An input register
is a 16-bit read-only register.

The syntax to read input registers is:
read(obj, "inputregs” ,address,count)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the input registers to read, and it

is a double. The count parameter is the number of input registers to read, and it is a
double. If the read operation is successful, it returns a vector of doubles. Each double
represents a 16-bit register value, where the first value in the vector corresponds to the
input register value at the starting address.

This example reads 4 input registers, starting at address 20.
read(m, "inputregs”,20,4)
ans =

27640 60013 51918 62881

Reading Holding Registers Over MODBUS

If the read target is holding registers, the function reads the values from 1-125
contiguous holding registers in the remote server, starting at the specified address. A
holding register is a 16-bit read/write register.

11-13

11 Controlling Devices Using MODBUS

11-14

The syntax to read inputs is:
read(obj, "holdingregs” ,address, count)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the holding registers to read, and it
is a double. The count parameter is the number of holding registers to read, and it is

a double. If the read operation is successful, it returns a vector of doubles. Each double
represents a 16-bit register value, where the first value in the vector corresponds to the
holding register value at the starting address.

This example reads 4 holding registers, starting at address 20.
read(m, "holdingregs”,20,4)
ans =

27640 60013 51918 62881

For an example showing the entire workflow of reading a holding register on a PLC, see
“Read Temperature from a Remote Temperature Sensor” on page 11-16.

Specifying Server ID and Precision

You can read any of the four types of targets and also specify the optional parameters for
server ID, and can specify precision for registers.

Server ID Option

The serverld argument specifies the address of the server to send the read command
to. Valid values are 0—247, with O being the broadcast address. This argument is
optional, and the default is 1.

The syntax to specify server ID is:
read(obj ,target,address,count,serverld)
This example reads 8 coils starting at address 1 from server ID 3.

read(m, "coils”,1,8,3);

Read Data from a MODBUS Server

Precision Option

The "precision” argument specifies the data format of the register being read from
on the MODBUS server. Valid values are "uintl6”, "intl6", "uint32~, "int32",
"uint64”, "int64", "single”, and "double”. This argument is optional, and the
default is "uintl6”.

Note that "precision” does not refer to the return type, which is always "double”. It
only specifies how to interpret the register data.

The syntax to specify precision is:
read(obj ,target,address,count,precision)

This example reads 8 holding registers starting at address 1 using a precision of
uint32°.

read(m, "holdingregs”®,1,8, "uint32");
Both Options

You can set both the serverld option and the "precision” option together when the
target is a register. When you use both options, the serverld should be listed first after
the required arguments.

The syntax to specify both Server ID and precision is:
read(obj ,target,address,count,serverld,precision)

This example reads 8 holding registers starting at address 1 using a precision of
"uint32* from Server ID 3.

read(m, "holdingregs®,1,8,3, "uint32%);

11-15

11 Controlling Devices Using MODBUS

Read Temperature from a Remote Temperature Sensor

11-16

This example shows how to read temperature and humidity measurements from a
remote sensor on a PL.C connected via TCP/IP. The temperature sensor is connected to a
holding register at address 1 on the board, and the humidity sensor is at address 5.

Create the MODBUS object, using TCP/IP.

m

modbus("tcpip”, "192.168.2.1", 502)
m =
Modbus TCPIP with properties:

DeviceAddress: "192.168.2.1"
Port: 502
Status: "open®
NumRetries: 1
Timeout: 10 (seconds)
ByteOrder: "big-endian”
WordOrder: "big-endian®

The humidity sensor does not always respond instantly, so increase the timeout
value to 20 seconds.

m.Timeout = 20

The temperature sensor is connected to a holding register at address 1 on the board.
Read 1 value to get the current temperature reading. Since temperature value is a
double, set the precision to a double.

read(m, "holdingregs®,1,1, "double™)
ans =

46.7

The humidity sensor is connected to the holding register at address 5 on the board.
Read 1 value to get the current humidity reading.

read(m, "holdingregs®,5,1, "double™)
ans =

35.8

Read Temperature from a Remote Temperature Sensor

5 Disconnect from the server and clear the object.

clear m

11-17

11 Controlling Devices Using MODBUS

Write Data to a MODBUS Server

In this section...

“Types of Data You Can Write to Over MODBUS” on page 11-18
“Writing Coils Over MODBUS” on page 11-18
“Writing Holding Registers Over MODBUS” on page 11-19

Types of Data You Can Write to Over MODBUS

The write function performs write operations to two types of target addressable areas:

+ Coils
* Holding registers

Each of the two areas can accept a write request to a single address or a contiguous
address range. When you perform the write operation, you must specify the target
type (target), the starting address (address), and the values to write (values). You
can also optionally specify the address of the server (serverld) and the data format
(precision).

Writing Coils Over MODBUS

If the write target is coils, the function writes a contiguous sequence of 1-1968 coils
to either on or off (1 or 0) in a remote device. A coil is a single output bit. A value of 1
indicates the coil is on, and a value of O means it is off.

The syntax to write to coils is:
write(obj, "coils”,address,values)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the coils to write to, and it is a double.

The values parameter is an array of values to write. For a target of coils, valid values
are O and 1.

11-18

Write Data to a MODBUS Server

This example writes to 4 coils, starting at address 8289.
write(m,"coils®,8289,[1 1 0 1])
You can also create a variable for the values to write.

values = [1 1 0 1];
write(m, "coils*,8289,values)

Writing Holding Registers Over MODBUS

If the write target is holding registers, the function writes a block of 1-123 contiguous
registers in a remote device. Values whose representation is greater than 16 bits are
stored in consecutive register addresses.

The syntax to write to holding registers is:
write(obj, "holdingregs” ,address,values)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address parameter is the starting address of the holding registers to write to, and it
is a double. The values parameter is an array of values to write. For a target of holding
registers, valid values must be in the range of the specified precision.

This example sets the register at address 49153 to 2000.
write(m, "holdingregs*,49153,2000)
Precision Option

The "precision” argument specifies the data format of the register being written to
on the MODBUS server. Valid values are "uintl6”®, "intl6", "uint32", "int32",
"uint64”, "iInt64", "single”, and "double”. This argument is optional, and the
defaultis "uintl6”.

The values passed in to be written are converted to register values based on the

specified precision. For precision values "int32", "uint32", and "single”, each

value corresponds to 2 registers, and for "uint64”, "int64" and "double”, each value
corresponds to 4 registers. For "intl6" and "uintl6”, each value is from a single 16-bit
register.

11-19

11 Controlling Devices Using MODBUS

This example writes 3 values, starting at address 29473 and converting to single
precision.

write(m, "holdingregs®,29473,[928.1 50.3 24.4],"single")

11-20

Write and Read Multiple Holding Registers

Write and Read Multiple Holding Registers

The writeRead function is used to perform a combination of one write operation and one
read operation on groups of holding registers in a single MODBUS transaction. The write
operation is always performed before the read. The range of addresses to read and the
range of addresses to write must be contiguous, but each is specified independently and
may or may not overlap.

The syntax for the write-read operation to holding registers is:

writeRead(obj ,writeAddress,values, readAddress, readCount)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The writeAddress is the starting address of the holding registers to write to, and it is a
double. The values parameter is an array of values to write. The first value in the vector
1s written to the writeAddress. Each value must be in the range 0—65535.

The readAddress is the starting address of the holding registers to read, and
readCount is the number of registers to read.

If the operation is successful, it returns an array of doubles, each representing a 16-bit
register value, where the first value in the vector corresponds to the register value at
address specified in readAddress.

This example writes 2 holding registers starting at address 601, and reads 4 holding
registers starting at address 19250.

writeRead(m,601,[1024 512],19250,4)
ans =
27640 60013 51918 62881

You can optionally create variables for the values to be written, instead of including
the array of values in the function syntax, as shown above. The same example could be
written this way, using a variable for the values:

values = [1024 512];
writeRead(m,601,values,19250,4)

11-21

11 Controlling Devices Using MODBUS

11-22

ans =
27640 60013 51918 62881
Server ID Option

The serverld argument specifies the address of the server to send the read command
to. Valid values are 0—247, with O being the broadcast address. This argument is
optional, and the default is 1.

The syntax to specify server ID is:

writeRead(obj ,writeAddress,values,readAddress, readCount,serverlid)

This example writes 3 holding registers starting at address 400, and reads 4 holding
registers starting at address 52008, from server ID 6.

writeRead(m,400,[1024 512 680],52008,4,6)
ans =

38629 84735 29456 39470
Precision Option

The "writePrecision” and "readPrecision” arguments specify the data format

of the register being read from or written to on the MODBUS server. Valid values

are "uintl6”, "Iintl6", "uint32", "Int32", "uint64”, "int64", "single”, and
"double®. This argument is optional, and the default is "uintl16”.

The values passed in to be written are converted to register values based on the
specified precision. For precision values "int32", "uint32", and "single”, each
value corresponds to 2 registers, and for "uint64", "int64" and "double”, each value

corresponds to 4 registers. For "intl6" and "uintl6”, each value is from a single 16-bit
register.

Note that precision specifies how to interpret or convert the register data, not the return
type of the read operation. The data returned is always of type double.

The syntax for designating the write or read precision is:

writeRead(obj ,writeAddress,values,writePrecision,readAddress, readCount,readPrecision)

Write and Read Multiple Holding Registers

If you want to use the serverld argument as well, it goes after the readPrecision.

This example writes 3 holding registers starting at address 400 and reads 4
holding registers starting at address 52008, from server ID 6. It also specifies a
writePrecisionof "uint64" and a readPrecision of "uint32*

writeRead(m,400,[1024 512 680], "uint64-,52008,4, "uint32",6)
ans =
38629 84735 29456 39470

This example reads 2 holding registers starting at address 919, and writes 3 holding
registers starting at address 719, formatting read and write for single precision data
registers.

values = [1.14 5.9 11.27];
writeRead(m,719,values, "single”,919,2, "single™)

11-23

11 Controlling Devices Using MODBUS

Modify the Contents of a Holding Register Using a Mask Write

11-24

You can modify the contents of a holding register using the maskWrite function. The
function can set or clear individual bits in a specific holding register. It is a read/modify/
write operation, and uses a combination of an AND mask, an OR mask, and the current
contents of the register.

The function algorithm works as follows:

Result = (register value AND andMask) OR (orMask AND (NOT andMask))

For example:

Hex Binary
Current contents 12 0001 0010
And_Mask F2 1111 0010
Or_Mask 25 0010 0101

(NOT And_Mask) OD 0000 1101
Result 17 0001 0111

If the orMask value is 0, the result is simply the logical ANDing of the current contents
and the andMask. If the andMask value is 0, the result is equal to the orMask value.

The contents of the register can be read by using the read function with the target set to
"holdingregs”. They could, however, be changed subsequently as the controller scans
its user logic program.

The syntax for the mask write operation for holding registers is:
maskWrite(obj, address, andMask, orMask)

If you want to designate a server ID, use:

maskWrite(obj, address, andMask, orMask, serverld)

The obj parameter is the name of the MODBUS object. The examples assume you
have created a MODBUS object, m. For information on creating the object, see “Create a
MODBUS Connection” on page 11-4.

The address is the register address to perform mask write on. The andMask parameter
1s the AND value to use in the mask write operation. The valid range is 0—65535. The

Modify the Contents of a Holding Register Using a Mask Write

orMask parameter is the OR value to use in the mask write operation. The valid range is
0—65535.

This example sets bit 0 at address 20 and performs a mask write operation. Since the
andMask is a 6, that clears all bits except for bits 1 and 2. Bits 1 and 2 are preserved.

andMask = 6
orMask = 0

maskWrite(m,20,andMask,orMask)

11-25

Using Device Obijects

This chapter describes specific features and actions related to using device objects.
* “Device Objects” on page 12-2
“Creating and Connecting Device Objects” on page 12-5

“Communicating with Instruments” on page 12-8

+ “Device Groups” on page 12-13

12 Using Device Objects

Device Obijects

12-2

In this section...

“Overview” on page 12-2
“What Are Device Objects?” on page 12-2
“Device Objects for MATLAB Instrument Drivers” on page 12-3

Overview

All instruments attached to your computer must communicate through an interface.
Popular interface protocols include GPIB, VISA, RS-232 (serial), and RS-485 (serial).
While Instrument Control Toolbox interface objects allow you to communicate with
your equipment at a low (instrument command) level, Instrument Control Toolbox also
allows you to communicate with your equipment without detailed knowledge of how the
hardware interface operates.

Programmable devices understand a specific language, sometimes referred to as its
command set. One common set is called SCPI (Standard Commands for Programmable
Instruments).

Device objects allow you to configure and query an instrument without knowledge of
its command set. This section covers the basic functionality of device objects that use
MATLAB instrument drivers.

If your application is straightforward, or if you are already familiar with the topics
mentioned above, you might want to begin with “Creating and Connecting Device
Objects” on page 12-5. If you want a high-level description of all the steps you are

likely to take when communicating with your instrument, refer to the Getting Started
documentation that is linked to from the top of the main Instrument Control Toolbox Doc
Center page.

What Are Device Objects?

Device objects are used to represent instruments in MATLAB workspace. Properties and
methods specific to an instrument are encapsulated within device objects. Device objects
also free you from the specific underlying commands required to communicate with your
hardware.

Device Objects

You can use device objects at the MATLAB Command Window, inside functions, scripts,
and graphical user interface callbacks. The low-level communication is performed
through a MATLAB instrument driver.

| Hardware
Interface . Instrument
7 Object T Serial
MATLAB o |_cpm -
<
aul Device MATLAB | 1 VI g
I or [| Object [| Instrument Driver [] S
Copmand ' Driver 2 | rcpap
Line =
S O O
VXIplug&pla UDP O 00O
[| Driver [|
MATLAB

Device Objects for MATLAB Instrument Drivers

There are three types of MATLAB instrument drivers:

+ MATLAB interface instrument driver
+ MATLAB IVI instrument driver
+ MATLAB VXIplug&play instrument driver

* Generic instrument driver

Instrument Control Toolbox device objects support all these types of MATLAB drivers, so
that by using a device object, you can interface with any of these drivers in the same way.
However, each of these drivers interfaces differently with the hardware. While MATLAB
IVI and MATLAB VXlIplug&play drivers interface directly through standard drivers and
the hardware port to the instrument, the MATLAB interface driver requires an interface
object to communicate with the instrument. You can use generic drivers to communicate
with devices or software. For more information on generic drivers, see “Generic Drivers:
Overview” on page 16-2.

The Instrument Control Toolbox software supports the following interface objects:
* gpib

- serial

12-3

12 Using Device Objects

12-4

+ tcpip
+ udp
* visa

To learn how to create and use interface objects, see “Creating an Interface Object” on
page 3-2.

Note If you are using an interface object with a device object and a MATLAB interface
driver, you do not need to connect the interface object to the interface using the fopen
command. You need to connect the device object only.

Available MATLAB Instrument Drivers

Several drivers ship with the Instrument Control Toolbox software. You can find these
drivers by looking in the directory

matlabroot\toolbox\instrument\instrument\drivers

where matlabroot is the MATLAB installation directory, as seen when you type
matlabroot

at the MATLAB Command Window.

Many other drivers are available on the MathWorks Web site at

http://www.mathworks.com/matlabcentral/fileexchange

including drivers specifically for the Instrument Control Toolbox software.

http://www.mathworks.com/matlabcentral/fileexchange

Creating and Connecting Device Objects

Creating and Connecting Device Objects

In this section...
“Device Objects for MATLAB Interface Drivers” on page 12-5
“Device Objects for VXIplug&play and IVI Drivers” on page 12-6

“Connecting the Device Object” on page 12-7

Device Objects for MATLAB Interface Drivers

Create a MATLAB device object to communicate with a Tektronix TDS 210 Oscilloscope.
To communicate with the scope you will use a National Instruments GPIB controller.

1 First create an interface object for the GPIB hardware. The following command
creates a GPIB object for a National Instruments GPIB board at index 0 with an
instrument at primary address 1.

g = gpib("ni~,0,1);

2 Now that you have created the interface object, you can construct a device object
that uses it. The command to use is icdevice. You need to supply the name of the
instrument driver, tektronix_tds210, and the interface object created for the

GPIB controller, g.

d = icdevice("tektronix_tds210", g);

You can use the whos command to display the size and class of d.

whos d
Name Size Bytes Class
d 1x1 652 icdevice object

Grand total is 22 elements using 652 bytes
Device Object Properties
A device object has a set of base properties and a set of properties defined by the driver.

All device objects have the same base properties, regardless of the driver being used. The
driver properties are defined by the driver specified in the icdevice constructor.

12-5

12 Using Device Objects

Device Object Display

Device objects provide you with a convenient display that summarizes important object
information. You can invoke the display in these ways:

+ Type the name of the device object at the command line.
* Exclude the semicolon when creating the device object.
+ Exclude the semicolon when configuring properties using dot notation.

+ Pass the object to the disp or display function.
The display summary for device object d is given below.
Instrument Device Object Using Driver : tektronix_tds210.mdd

Instrument Information

Type: Oscilloscope
Manufacturer: Tektronix
Model : TDS210

Driver Information

DriverType: MATLAB interface object
DriverName: tektronix_tds210.mdd
DriverVersion: 1.0

Communication State
Status: open

You can also display summary information via the Workspace browser by right-clicking a
device object and selecting Display Summary from the context menu.

Device Objects for VXIplug&play and IVI Drivers
Creating the MATLAB Instrument Driver

The command-line function makemid creates a MATLAB instrument driver from a
VXIplug&play or IVI-C driver, saving the new driver in a file on disk. The syntax is

makemid("driver®, "filename")

where driver is the original VXIplug&play or IVI-C driver name (identified by
instrhwinfo or the Test & Measurement Tool), and Fi lename is the file containing the

12-6

Creating and Connecting Device Objects

newly created MATLAB instrument driver. See the makemid reference page for a full
description of the function and all its options.

You can open the new driver in the MATLAB Instrument Driver Editor, and then modify
and save it as required.

Creating the Device Obiject

After you create the MATLAB instrument driver by conversion, you create the device
object with the filename of the new driver as an argument for icdevice.

For example, if the driver is created from a VXIplug&play or IVI-C driver,

obj = icdevice("ConvertedDriver.mdd®,"GPIBO::2::INSTR")

Connecting the Device Object

Now that you have created the device object, you can connect it to the instrument with
the connect function. To connect the device object, d, created in the last example, use
the following command:

connect(d);

By default, the property settings are updated to reflect the current state of the
instrument. You can modify the instrument settings to reflect the device object's property
values by passing an optional update parameter to connect. The update parameter

can be either object or instrument. To have the instrument updated to the object's
property values, the connect function from the previous example would be

connect(d, "instrument®);

If connect is successful, the device object's status property is set to open; otherwise it
remains as closed. You can check the status of this property with the get function or by
looking at the object display.

d.status
ans =

open

12-7

12 Using Device Objects

Communicating with Instruments

12-8

In this section...

“Configuring Instrument Settings” on page 12-8
“Calling Device Object Methods” on page 12-9

“Control Commands” on page 12-11

Configuring Instrument Settings

Once a device object has been created and connected, it can be used as the interface to
an instrument. This chapter shows you how to access and configure your instrument's
settings, as well as how to read and write data to the instrument.

Every device object contains properties specific to the instrument it represents. These
properties are defined by the instrument driver used during device object creation. For
example, there may be properties for an oscilloscope that allow you to adjust trigger
parameters, or the contrast of the screen display.

Properties are assigned default values at device object creation. On execution of connect
the object is updated to reflect the state of the instrument or vice versa, depending on the
second argument given to connect.

You can obtain a full listing of configurable properties by calling the set command and
passing the device object.

Configuring Settings on an Oscilloscope
This example illustrates how to configure an instrument using a device object.

The instrument used is a Tektronix TDS 210 two-channel oscilloscope. A square wave is
input into channel 1 of the oscilloscope. The task is to adjust the scope's settings so that
triggering occurs on the falling edge of the signal:

1 Create the device object — Create a GPIB interface object, and then a device
object for a TDS 210 oscilloscope.

g = gpib("'ni~,0,1);
d icdevice("tektronix_tds210", g);
2 Connect the device object — Use the connect function to connect the device

object to the instrument.

Communicating with Instruments

connect(d);

3 Check the current Slope settings for the Trigger property— Create a
variable to represent the Trigger property and then use the get function to obtain
the current value for the oscilloscope Slope setting.

dtrigger = get(d, "Trigger-");
dtrigger.Slope
ans =

rising

The Slope is currently set to rising.

4 Change the Slope setting — If you want triggering to occur on the falling edge,
you need to modify that setting in the device object. This can be accomplished with
the set command.

dtrigger.Slope = "falling®);

This changes Slope to falling.

5 Disconnect and clean up — When you no longer need the device object, disconnect
it from the instrument and remove it from memory. Remove the device object and
interface object from the MATLAB workspace.

disconnect(d);

delete(d);
clear d g dtrigger;

Calling Device Object Methods

Device objects contain methods specific to the instruments they represent.
Implementation details are hidden behind a single function. Instrument-specific
functions are defined in the MATLAB instrument driver.

The methods function displays all available driver-defined functions for the device
object. The display is divided into two sections:

* Generic object functions

* Driver-specific object functions

To view the available methods, type

12-9

12 Using Device Objects

12-10

methods(obj)
Use the instrhelp function to get help on the device object functions.
instrhelp(obj, methodname);

To call instrument-specific methods you use the invoke function. invoke requires the
device object and the name of the function. You must also provide input arguments,
when appropriate. The following example demonstrates how to use invoke to obtain
measurement data from an oscilloscope.

Using Device Object Functions

This example illustrates how to call an instrument-specific device object function.
Your task is to obtain the frequency measurement of a waveform. The instrument is a
Tektronix TDS 210 two-channel oscilloscope.

The scope has been preconfigured with a square wave input into channel 1 of the
oscilloscope. The hardware supports four different measurements: frequency, mean,
period, and peak-to-peak. The requested measurement is signified with the use of an
index variable from 1 to 4.

For demonstration purposes, the oscilloscope in this example has been preconfigured
with the correct measurement settings:

1 Create the device object — Create a GPIB interface object and a device object for
the oscilloscope.

g = gpib("ni”,0,1);
d icdevice("tektronix_tds210", Q);
2 Connect the device object — Use the connect command to open the GPIB object

and update the settings in the device object.

connect(d);

3 Obtain the frequency measurement — Use the invoke command and call
measure. The measure function requires that an index parameter be specified. The
value of the index specifies which measurement the oscilloscope should return. For
the current setup of the Tektronix TDS 210 oscilloscope, an index of 1 indicates that
frequency is to be measured.

invoke(d, "measure®, 1)

ans =

Communicating with Instruments

999.9609

The frequency returned is 999.96 Hz, or nearly 1 kHz.

4 Disconnect and clean up — You no longer need the device object so you can
disconnect it from the instrument. You should also delete it from memory and
remove it from the MATLAB workspace.

disconnect(d);
delete(d);
clear d g;

Control Commands

Control commands are special functions and properties that exist for all device objects.
You use control commands to identify an instrument, reset hardware settings, perform
diagnostic routines, and retrieve instrument errors. The set of control commands consists
of

+ “InstrumentModel” on page 12-11
+ “devicereset” on page 12-11

+ “selftest” on page 12-12

+ “geterror” on page 12-12

All control commands are defined within the MATLAB instrument driver for your device.
InstrumentModel

InstrumentModel is a device object property. When queried, the instrument
identification command is sent to the instrument.

For example, for a Tektronix TDS 210 oscilloscope,

d. InstrumentModel

ans =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v2.03 TDS2MM:MMV:v1.04
devicereset

To restore the factory settings on your instrument, use the devicereset function. When
devicereset is called, the appropriate reset instruction is sent to your instrument.

12-11

12 Using Device Objects

12-12

The command accepts a connected device object and has no output arguments.

devicereset(obj);
selftest

This command requests that your instrument perform a self-diagnostic. The actual
operations performed and output arguments are specific to the instrument your device
object 1s connected to. selftest accepts a connected device object as an input argument.

result = selftest(obj);
geterror

You can retrieve error messages generated by your instrument with the geterror
function. The returned messages are instrument specific. geterror accepts a connected
device object as an input argument.

msg = geterror(obj);

Device Groups

Device Groups

In this section...

“Working with Group Objects” on page 12-13

“Using Device Groups to Access Instrument Data” on page 12-13

Working with Group Objects

Device groups are used to group several related properties. For example, a channel group
might contain the input channels of an oscilloscope, and the properties and methods
specific to the input channels on the instrument.

MATLAB instrument drivers specify the type and quantity of device groups for device
objects.

Group objects can be accessed via the get command. For the Tektronix TDS 210
oscilloscope, there is a channel group that contains two group objects. The device
property to access a group is always the group name.

chans = get(d, "Channel™)

Hwindex: HwName: Type: Name:
1 CH1 scope-channel Channell
2 CH2 scope-channel Channel2

To display the functions that a device group object supports, use the methods function.
methods(chans(1))
You can also display a list of the group object's properties and their current settings.

chans(2)

To get help on a driver-specific property or function, use the instrhelp function, with
the name of the function or property.

instrhelp(chans(l), "Coupling®)
Using Device Groups to Access Instrument Data

This example shows how to obtain waveform data from a Tektronix TDS 210 oscilloscope
with a square wave signal input on channel 1, on a Windows machine. The methods used
are specific to this instrument:

12-13

12 Using Device Objects

12-14

Create and connect — First, create the device object for the oscilloscope and then
connect to the instrument.

s = serial("coml™);

d = icdevice("tektronix_tds210", s);

connect(d);

Get the device group — To retrieve waveform data, first gain access to the
Waveform group for the device object.

w = d.waveform;

This group is specific for the hardware you are using. The TDS 210 oscilloscope has
one Waveform; therefore the group contains one group object.

Hwlndex: HwName: Type: Name:

1 Waveforml scope-waveform Waveforml

Obtain the waveform — Now that you have access to the Waveform group objects,
you can call the readwaveform function to acquire the data. For this example,
channel 1 of the oscilloscope is reading the signal. To access this channel, call
readwaveform on the first channel.

wave = invoke(w, "readwaveform®, “channell®);
View the data — The wave variable now contains the waveform data from the
oscilloscope. Use the plot command to view the data.

plot(wave);
Disconnect and clean up — Once the task is done, disconnect the hardware and
free the memory used by the objects.

disconnect(d)
delete([d s])
clear d, s, w, wave;

Using VXiplug&play Drivers

This chapter describes the use of VXIplug&play drivers for instrument control. The
sections are as follows.

“VXI plug and play Setup” on page 13-2
“VXI plug and play Drivers” on page 13-4

13 Using VXIplug&play Drivers

VXI plug and play Setup

13-2

In this section...

“Instrument Control Toolbox Software and VXIplug&play Drivers” on page 13-2
“VISA Setup” on page 13-2
“Other Software Requirements” on page 13-3

Instrument Control Toolbox Software and VXlplug&play Drivers

The Instrument Control Toolbox software can communicate with hardware using
VXIplug&play drivers. Most often, the instrument manufacturers supply these drivers.

For definitions and specifications of VXIplug&play drivers, see the Web site of the IVI
Foundation at http://ivifoundation.org/specifications/default.aspx.

VISA Setup

A system must have VISA installed in order for VXIplug&play drivers to work. The
driver installer software might specify certain VISA or other connectivity requirements.

To determine whether your system is properly configured with the necessary version of
VISA, at the MATLAB Command window, type:

instrhwinfo visa
ans =
InstalledAdaptors: {"agilent"}
JarFileVersion: "Version 2.0 (R14)*

The cell array returned for Instal ledAdaptors indicates which VISA software
is installed. A 1x0 cell array indicates that no VISA is installed. Possible
InstalledAdaptors values are agilent, tek, and ni.

If you do not have VISA installed, you need to install it. The software installation
disk provided with your instrument might include VISA along with the instrument's
VXlplug&play driver, or you might be able to download VISA from the instrument
manufacturer's Web site.

http://ivifoundation.org/specifications/default.aspx

VXl plug and play Setup

Other Software Requirements

An instrument driver can have other software requirements in addition to or instead of
VISA. Consult the driver documentation. The installer software itself might specify these
requirements.

13-3

13 Using VXIplug&play Drivers

VXI plug and play Drivers

In this section...

“Installing VXI plug&play Drivers” on page 13-4
“Creating a MATLAB VXIplug&play Instrument Driver” on page 13-5

“Constructing Device Objects Using a MATLAB VXIplug&play Instrument Driver” on
page 13-7

“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 13-8

Installing VXI plug&play Drivers

The VXIplug&play driver particular to a piece of equipment is usually provided by the
equipment manufacturer as either an installation disk or as a Web download. Once the
driver is installed, you can determine whether the configuration is visible to MATLAB
software by using the Test & Measurement Tool to view the current driver installations.
Open the tool by typing:

tmtool

Expand the Instrument Drivers node and click VXIplug&play Drivers. Click the
Scan button to update the display. All installed VXIplug&play drivers will be listed.

<} Test & Measurement Tool - |EI|1|
File Wiew Tools Help
)
| & 8| e
Test & Measurement VXiplug&play Drivers View Help

(f Instrumert Cartral Taales
Mame | Path |

ttdzk D pplications IS A MMM T tiidsSk |

=2 Hardware
nﬂ" Instrurment Ohjects

] MATLAE Instrumert Drivers

Last scan date: 04-Dec-2003 11:51:34 Scan |

4

Alternatively, you can use the MATLAB function instrhwinfo to find out which drivers
are installed.

instrhwinfo (“vxipnp*®)

13-4

VXI plug and play Drivers

ans =
InstalledDrivers: {"tktds5k", "ag3325b", "hpe363xa“}
VXIPnPRootPath: "C:\VXIPNP\WINNT"

The cell array returned for Instal ledDrivers contains the names of all the installed
VXlIplug&play drivers. The string returned for VXIPnPRootPath indicates where the
drivers are installed.

Creating a MATLAB VXlplug&play Instrument Driver

To use a VXlIplug&play driver with a device object, you must have a MATLAB
VXlIplug&play instrument driver based upon the information in the original
VXIplug&play driver. The MATLAB VXIplug&play instrument driver, whether modified
or not, acts as a wrapper to the VXIplug&play driver. You can download or create the
MATLAB instrument driver.

Downloading a Driver from the MathWorks Web Site

You might find an appropriate MATLAB driver wrapper for your instrument on the
MathWorks Web site, on the Supported Hardware page for the Instrument Control
Toolbox software, at

http://www.mathworks.com/products/supportedio.html?prodCode=IC

On this page, click the VXIplug&play link. You then have a choice to go to the MATLAB
Central File Exchange, where you can look for the driver you need, or you can submit
a request to MathWorks for your particular driver with the Instrument Driver
Request Form.

To use the downloaded MATLAB VXlIplug&play driver, you must also have the
instrument's VXIplug&play driver installed. This driver is probably available from the
instrument manufacturer's Web site.

Creating a Driver with makemid

The command-line function makemid creates a MATLAB VXIplug&play instrument
driver from a VXIplug&play driver, saving the new driver in a file on disk. The syntax is

makemid("driver"®,"filename*")

where driver is the original VXIplug&play instrument driver name (identified by
instrhwinfo), and filename is the file containing the resulting MATLAB instrument
driver. See the makemid reference page for details on this function.

13-5

http://www.mathworks.com/products/supportedio.html?prodCode=IC

13 Using VXIplug&play Drivers

13-6

If you need to customize the driver, open the new driver in the MATLAB Instrument
Driver Editor, modify it as required, and save it.

Note When you create a MATLAB instrument driver based on a VXIplug&play driver,
the original driver must remain installed on your system for you to use the new MATLAB
instrument driver.

Importing with the MATLAB Instrument Driver Editor (midedit)

The MATLAB Instrument Driver Editor can import a VXIplug&play driver, thereby
creating a MATLAB VXIplug&play instrument driver. You can evaluate or set the
driver's functions and properties, and you can save the modified MATLAB instrument
driver for further use:

1 Open the MATLAB Instrument Driver Editor with midedit.

2 Select File > Import.

3 In the Import Driver dialog box, select the VXIplug&play driver that you want to
import and click Import.

The MATLAB Instrument Driver Editor loads the driver and displays the
components of the driver, as shown in the following figures.

«):MATLAB Instrument Driver Editor =]
File Edit Help
0D = 3
MATLAB Instrument Driver Summary View Help
W) thicssk

Driver summary

@ Summary|
Inttialization and Cleanup Manufacturer: |Tek‘tr0nix, Ihc.

@ Groups Supported models: |TDS 2000 Series Osciloscope
Properties

@ Functions

Instrument type: I\/)(IPnPInstrument LI

Driver version: |4_1

- Coritrol commandt

Identify: |

Reset: |

Self test: |

Error: I

MATLAB Instrument Driver Editor Showing tktds5k MATLAB Instrument Driver Summary

VXI plug and play Drivers

-:_.l.‘; MATLAB Instrument Driver Editor ;Iglll
File Edit Help
O == &

MATLAE Instrument Driver Functions View Help

A thtossik =] ada function: | Al Remove |

— Summary
] Intialization and Clean Inles Function Marme |
[—]—@ Groups yoolor

@ Acquisition getintensityparameters

@ ActionStatusFunc SaQISpIa?CDIDr
o setintensityparameters
@ Calibration

@ ConfigurationFunt
@ Cursar b
@ Diagnostics

= @ Displary

Properties

B[R =

B Functions|
@ ErrorHandling
b FileSystem

- I
<| I 3

tktds5k MATLAB Instrument Driver Display Group Functions
With the MATLAB Instrument Driver Editor, you can:

+ Create, delete, modify, and rename properties, functions, or groups.
+ Add code around instrument commands for analysis.

+ Add create, connect, and disconnect code.

+ Save the driver as a MATLAB VXIplug&play instrument driver.

For more information, see “M/ATLAB Instrument Driver Editor Overview” on page
19-2.

Note When you create a MATLAB instrument driver based on a VXIplug&play driver,
the original driver must remain installed on your system for you to use the new MATLAB
instrument driver.

Constructing Device Obijects Using a MATLAB VXlplug&play Instrument
Driver

Once you have the MATLAB VXIplug&play instrument driver, you create the device
object with the file name of the driver and a VISA resource name as arguments for
icdevice. For example:

13-7

13 Using VXIplug&play Drivers

13-8

obj = icdevice("MATLABVXIpnpDriver.mdd®,"GPIBO::2::INSTR")
connect(obj)

See the 1cdevice reference page for full details about this function.

Creating Shared Libraries or Standalone Applications When Using IVI-C
or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB
prompt:

sprintf("%s", [tempdir "ICTDeploymentFiles™])

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.mis generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file
by the name <driverName>_thunk pcwin64._dl1 is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

Using IVI Drivers

This chapter describes the use of IVI drivers for instrument control.

* “IVI Drivers Overview” on page 14-2

* “Instrument Interchangeability” on page 14-3

+ “Getting Started with IVI Drivers” on page 14-5

* “IVI Configuration Store” on page 14-15

+ “Using IVI-C Class-Compliant Wrappers” on page 14-21

+ “Using Quick-Control Oscilloscope” on page 14-25

+ “Using Quick-Control Function Generator” on page 14-34

14 Using IVI Drivers

IVI Drivers Overview

14-2

In this section...

“Instrument Control Toolbox Software and IVI Drivers” on page 14-2

“IVI-C” on page 14-2

Instrument Control Toolbox Software and IVI Drivers

Instrument Control Toolbox software communicates with instruments using
Interchangeable Virtual Instrument (IVI) drivers. The toolbox supports IVI-C drivers,
provided by various instrument manufacturers.

For definitions and specifications of IVI drivers and their components, see the IVI
Foundation Web site at http:/www.ivifoundation.org.

IVI-C

Instrument Control Toolbox software supports IVI-C drivers, with class-compliant and
instrument-specific functionality.

IVI class-compliant drivers support common functionality across a family of related
instruments. Use class-compliant drivers to access the basic functionality of an
instrument, and the ability to swap instruments without changing the code in your
application. With an IVI instrument-specific driver or interface, you can access the
unique functionality of the instrument. The instrument-specific driver generally does not
accommodate instrument substitution.

For IVI-C drivers, you can use IVI-C class drivers and IVI-C specific drivers. Device
objects you construct to call IVI-C class drivers offer interchangeability between

similar instruments, and work with all instruments consistent with that class driver.
Device objects you construct to call IVI-C specific drivers directly generally offer less
interchangeability, but provide access to the unique methods and properties of a specific
instrument.

http://www.ivifoundation.org

Instrument Interchangeability

Instrument Interchangeability

Minimal Code Changes

With IVI class-compliant drivers, you can exchange instruments with minimal code
changes. You can write your code for an instrument from one manufacturer and then
swap it for the same type of instrument from another manufacturer. After editing the
configuration file that identifies a new instrument, driver, and the hardware address,
you can run your code without modifying it.

Effective Use of Interchangeability

To use the interchangeability of IVI effectively:

* Install drivers for both instruments of the same type (IVI-C).

* Ensure that both drivers implement the same instrument class. For example, both
must conform to the requirements for IviDmm or IviScope.

* When using IVI-C your program needs a Class Driver that instantiates the Class
Compliant Specific Driver and calls class-compliant functions in it.

* Ensure that your program does not call instrument-specific functions.

You can enhance your code to handle the differences between the instruments or drivers
you are using. You can still use these instruments interchangeably.

Examples of Interchangeability

The following diagram show interchangeability between instruments using IVI-C drivers.

14-3

14 Using IVI Drivers

User |-—=——---1 Gur -

Code

IVl Class >
Driver

VI
l Configuration

Store
Y

VI Clas_sl-Compliant »
Specific Driver

~_

————————— Function Calls --------- GUI Access @ m Foundation

Using an IVI-C Class Compliant Driver

14-4

Getting Started with IVI Drivers

Getting Started with IVI Drivers

In this section...

“Introduction” on page 14-5
“Requirements to Work with MATLAB” on page 14-6

“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 14-8

“MATLAB IVI Instrument Driver” on page 14-9
“Using MATLAB IVI Wrappers” on page 14-12

Introduction

You need to install IVI drivers and shared components before you can use them in
MATLAB. See Requirements below for more information. You can use an IVI driver in
MATLAB in two different ways. The syntax for each method differs vastly. Please refer
to the MathWorks IVI Web page for more information. After installing the necessary
components, you can:

* Create and use a MATLAB IVI instrument driver as described in MATLAB® IVI
Instrument Driver. Here, you create a MATLAB IVI instrument driver with .mdd
extension using an IVI driver.

+ Use a MATLAB IVI wrapper as described in Using MATLAB® IVI Wrappers. Here,
MATLAB wraps the IVI driver. You can then use this wrapper with the Instrument

Control Toolbox software. This allows interchangeability and is the preferred method
if you are working with class-compliant drivers.

You can use the MATLAB IVI Wrappers provided with the Instrument Control
Toolbox software with IVI drivers of the same class. Supported IVI driver classes are:

* IViIACPwr

+ lviCounter

* 1viDCPwr

+ lviDigitizer
* lviDmm

+ lviDownconverter
+ lviFgen

14-5

http://www.mathworks.com/ivi

14 Using IVI Drivers

14-6

+ lviPwrMeter

+ lviUpconverter
+ IVviRFSigGen

+ lviScope

+ lviSpecAn

+ lviSwtch

You can also use MATLAB IVI wrappers provided by an instrument vendor that has
built in MATLAB support. Refer to the vendor documentation for more information
about using these drivers in MATLAB.

With the MATLAB IVI instrument driver, you construct a device object, which you use to
communicate with your instrument. With the MATLAB IVI wrapper, you communicate
with the instrument by directly accessing elements of the driver class.

Requirements to Work with MATLAB
Before you use IVI drivers in MATLAB, install:

+ VISA
* IVI Shared components
* Required IVI drivers

Verifying VISA

Most IVI drivers require you to install VISA libraries on your system. The driver
installer software specifies certain VISA or other connectivity requirements.

To determine proper configuration of the necessary version of VISA on your system, at
the MATLAB Command Window, type:

instrhwinfo visa
ans =
InstalledAdaptors: {"agilent"}
JarFileVersion: "Version 2.8.0""

The cell array returned for Instal ledAdaptors indicates the type of VISA software
installed. A 1-by-0 cell array indicates that your system does not have VISA installed.
Possible Instal ledAdaptors values are agi lent, tek, and ni.

Getting Started with IVI Drivers

To install VISA, check the software installation disk provided with your instrument.
This disk can include VISA along with the IVI driver for the instrument. You can also
download VISA from the Web site of the instrument manufacturer.

An instrument driver can have other software requirements in addition to or instead of
VISA. Consult the driver documentation. The installer software itself can specify these
requirements.

Verifying IVI Shared Components

Many driver elements are common to a wide variety of instruments and not contained in
the driver itself. You install them separately as shared components. Sharing components
keeps the drivers as small and interchangeable as possible. You can use instrhwinfo to
determine whether you installed shared components on your system.

instrhwinfo (Tivi©)
ans =

ConfigurationServerVersion: "1.6.0.10124"
MasterConfigurationStore: “C:\Program Files\IVI\Data\lviConfigurationStore.xml"
IVIRootPath: "C:\Program Files\IVI*

ConfigurationServerVersion, MasterConfigurationStore, and

1VIRootPath all convey information related to installed shared components.
ConfigurationServerVersion indicates whether you installed IVI shared
components. If its value is an empty character vector, then you have not installed shared
components.

Verifying IVI Drivers

The instrument manufacturer usually provides the specific IVI driver, either on an
installation disk or as a Web download. Required VISA software and IVI shared
components could also come with the driver.

You can use instrhwinfo to find information on installed IVI drivers and shared
components.

instrhwinfo ("ivi")
ans =
LogicalNames: {"MainScope®, “FuncGen"}
ProgramlDs: {"TekScope.TekScope~","Agilent33250"}
Modules: {"ag3325b*", "hpe363xa”}

ConfigurationServerVersion: "1.6.0.10124"

MasterConfigurationStore: "C:\Program Files\IVI\Data\

IviConfigurationStore.xml*

14-7

14 Using IVI Drivers

14-8

Logical names are associated with particular IVI drivers, but they do not necessarily
imply that the drivers are currently installed. You can install drivers that do not have a
LogicalName property set yet, or drivers whose LogicalName was removed.

Alternatively, use the Test & Measurement Tool to view the installation of IVI drivers

1VIRootPath:

"C:\Program Files\IVI*

and the setup of the IVI configuration store. Open the tool by typing:

tmtool

Expand the Instrument Drivers node and click IVI. Click the Software Modules
tab. (For information on the other IVI driver tabs and settings in the Test &

Measurement Tool, see “IVI Configuration Store” on page 14-15.)

+) Test & Measurement Tool

File Wiew Tools Help

=lolx|

|& 8l

Test & Measurement

[}

View Help

4:\ Instrument Control Toolkox
) Hardware
O Instrument Chjects

] Instrumert Drivers

MATLAE Instrumert Drivers
Yilplugdalay Drivers

Configuration store: Do pplications W DatalviConfigurationStore sl

Lagical Namesl Driver Sessions Software Modules | Hardware Assets

Mame:
TekScope Software

Supported instrument mocdels:
TekScope 5000, 6000 and 7000 series oscilloscopes

Description:

TekScope software module description
Physical natnes:

(Channell =
(Channel2

Channel3

(Channel4

hathl

etz =l

Creating Shared Libraries or Standalone Applications When Using IVI-C

or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB

prompt:

Getting Started with IVI Drivers

fullfile(tempdir, "1CTDeploymentFiles” ,sprintf("R%s" ,version("-release")))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.mis generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file
by the name <driverName>_thunk_pcwin64.dl1 is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

MATLAB IVI Instrument Driver

+ “Using a MATLAB IVI Instrument Driver” on page 14-9

* “Creating a MATLAB IVI Instrument Driver with makemid” on page 14-9

+ “Downloading a MATLAB IVI Instrument Driver” on page 14-10

* “Importing MATLAB IVI Instrument Drivers” on page 14-10

+ “Constructing Device Objects Using a MATLAB IVI Instrument Driver” on page
14-11

Using a MATLAB IVI Instrument Driver

To use an IVI driver with a device object, you need a MATLAB IVI instrument driver
based upon the information in the original IVI driver. The MATLAB IVI instrument
driver, whether modified or not, acts as a wrapper to the IVI driver. These drivers,
however, do not support interchangeability. You can download or create the MATLAB
IVI instrument driver.

Creating a MATLAB IVI Instrument Driver with makemid

The command-line function makemid creates a MATLAB IVI instrument driver from an
IVI driver, saving the new driver in a file on disk. The syntax is:

makemid("driver"®,"filename*")

driver is the original IVI driver name (identified by instrhwinfo or the Test &
Measurement Tool), and filename is the MATLAB IVI instrument driver name. For
driver use a Module name, a ProgramlD, or a LogicalNames value. See the makemid
reference page for full details on this function.

To customize the driver, open the new driver in the MATLAB Instrument Driver Editor,
modify it as required, and save it.

14-9

14 Using IVI Drivers

14-10

Tip: Do not uninstall the original IVI driver when you create a MATLAB IVI instrument
driver based on an IVI driver. You need the IVI driver in order to use the new MATLAB
IVI instrument driver.

Note: When you create a MATLAB IVI instrument driver without specifying an interface
name, makemid uses the instrument-specific interface as the default interface.

Downloading a MATLAB IVI Instrument Driver

Go to the MATLAB Central Web site and search for an appropriate MATLAB IVI
instrument driver for your instrument. You can look for wrappers using the instrument
drivers tag in the File Exchange area.

To use the downloaded MATLAB IVI instrument driver, you also need the IVI driver
for the installed instrument. Find this driver on the Web site of the instrument
manufacturer.

Importing MATLAB VI Instrument Drivers

You can import an IVI driver using the MATLAB Instrument Driver Editor, and create
a MATLAB IVI instrument driver. Evaluate or set the functions and properties of the
driver, and save the modified MATLAB IVI instrument driver for further use.

1 Open the MATLAB Instrument Driver Editor by typing midedit.
2 Select File > Import. The Import Driver dialog box opens.
3 Select the IVI driver that you want to import, and click Import.

The MATLAB Instrument Driver Editor loads the driver and displays its
components.

Getting Started with IVI Drivers

-z_.l.‘; MATLAB Instrument Driver Editor ;Iglll
File Edit Help
O == &

MATLAE Instrument Driver Functions View Help

) Tekscope =4 | ada function: | A Rerove_ |

— Summary

] Intialization and Clean Inles Function Marme |

[—]—@ Groups ConfigureScreenSaver

§h Acquistion ConfigureScresnText

@ Channels ConfigurellserColorPalette

@ Cursar Configure’ariablePersistence
Configureiisveformintensity

@ CursorHBars

ReadScreenText
@ CursorPaired Readavefarmintensity
@ CursorsScreen ResetPersistence
@ CursorSplit
@ CursorvBars
@ Cursoniavetorm
= @ Displary
Properties

B Functions| -

.
<| I)

FEIGEEEEEE

With the MATLAB Instrument Driver Editor, you can do the following:

* Create, delete, modify, and rename properties, functions, or groups.
* Add code around instrument commands for analysis.
+ Add, create, connect, and disconnect code.

+ Save the driver as a MATLAB IVI instrument driver.

For more information, see “M/ATLAB Instrument Driver Editor Overview” on page
19-2.

Tip: Do not uninstall the original IVI driver when you create a MATLAB IVI instrument
driver based on an IVI driver. You need the IVI driver in order to use the new MATLAB
IVI instrument driver.

Constructing Device Objects Using a MATLAB IVI Instrument Driver

Once you have the MATLAB IVI instrument driver, create the device object with the
file name of the MATLAB IVI instrument driver as an argument for icdevice. The
following examples show the creation of the MATLAB IVI instrument driver (all with
-mdd extensions) and the construction of device objects to use them.

14-11

14 Using IVI Drivers

14-12

See the icdevice and makemid reference pages for full details on these functions.

In the following example, makemid uses a LogicalNames value to identify an IVI
driver, then creates a MATLAB IVI instrument driver. Because LogicalNames is
associated with a driver session and hardware asset, you do not need to pass a RsrcName
to icdevice when constructing the device object.

makemid("MainScope®, "MainScope.mdd®);
obj = icdevice("MainScope.mdd"®);

In the next example, makemid uses a ProgramlD to reference an IVI driver, then creates
a MATLAB IVI instrument driver. The device object requires a RsrcName in addition to
the file name of the MATLAB IVI instrument driver.

makemid("TekScope.TekScope”, "TekScopeML.mdd") ;
obj = icdevice("TekScopeML.mdd","GPIBO::13::INSTR");

In the next example, makemid uses a software Module to reference an IVI-C driver, then
creates a MATLAB IVI instrument driver. The device object requires a RsrcName in
addition to the file name of the MATLAB IVI instrument driver.

makemid("ag3325b*, "Ag3325bML .mdd ™) ;
obj = icdevice("Ag3325bML.mdd*", "ASRL1::INSTR");

In the next example, makemid creates a MATLAB IVI instrument driver based on the
IVI-C class driver ivifgen. The device object uses the MATLAB IVI instrument driver
file name and the logical name of the driver from the IVI configuration store.

makemid("ivifgen”, "FgenML.mdd");
obj = icdevice("FgenML.mdd", "FuncGen");

Using MATLAB IVI Wrappers

MATLAB IVI wrappers work well with class-compliant drivers.

This example shows how to connect to an instrument and read a waveform using a
MATLAB IVI Wrapper.

The instrument in this example is an Agilent Technologies' MSO6014 mixed signal
oscilloscope, with an Agilent546XX driver.

%Create the object
myScope = instrument.ivicom.lviScope("Agilent546XX.Agilent546XX");

%Connect to the instrument using the VISA resource string
myScope. Initialize("TCPIPO: 1 xxX-XXXX.XXX.<yourdomain.com>::instO::INSTR", false,
false, "simulate=false~);

Getting Started with IVI Drivers

%Access the Measeurements Collection
myScopeMeasurements = myScope.Measurements

%Configure measurement 1
myScopeMeasurements . AutoSetup;

name = myScopeMeasurements._Name(1);
myScopeMeasurementl = myScopeMeasurements. ltem(name);

%Access the Channels collection
myScopeChannels = myScope.Channels;

%Configure channel 1

name = myScopeChannels.Name(1);
myScopeChannell= myScopeChannels.ltem(name)
myScopeChannell_Enabled = 1;

%Configure a trigger

myScope.Trigger.Source = "Channell”;

myScope.Trigger.Level = 1.0;

myScope.Trigger.Edge.Slope = "lviScopeTriggerSlopePositive~;

%Start the measurement and get the data
myScopeMeasurements. Initiate;
myWaveform = myScopeMeasurementl.FetchWaveform;

%Plot the data
plot(myWaveform);

%Close and delete the object

myScope.Close;
myScope.delete

14-13

14 Using VI Drivers

r ™
4 Figure 1 E@g

File Edit View Insert Tools Desktop Window Help

NEAL | bRVODEL G| 0E|aD

0251 \"m«v_.. M i

0.2 -

01 E

0.05 E

e e

-0.05

0.1 L i i i i i L i i
0 100 200 300 400 500 600 700 800 900 1000

.

Plot the Waveform Read Using the MATLAB IVI Wrapper

14-14

IVI Configuration Store

IVI Configuration Store

In this section...

“Benefits of an IVI Configuration Store” on page 14-15
“Components of an IVI Configuration Store” on page 14-15
“Configuring an IVI Configuration Store” on page 14-16

Benefits of an IVl Configuration Store

By providing a way to configure the relationship between drivers and I/O references, an
IVI configuration store greatly enhances instrument interchangeability.

Suppose your code uses only a specified driver to communicate with one type of
instrument at a fixed location. If you change the instrument model, instrument location,
or driver, you would have to modify the code to accommodate that change.

An IVI configuration store offers the ability to accommodate different instrument
models, drivers, or ports, without having to modify your code. This interchangeability is
especially useful when you use code that cannot be easily modified.

Components of an IVl Configuration Store

The components of an IVI configuration store identify:

* Locations of the instruments to communicate with
+ Software modules used to control the instruments

+ Associations of software modules used with instruments at specific locations

IVI Configuration Store

Driver Session

Software Instrument
Module

Logical 1/0 oooo
| Code I Name Qoo
Hardware
Asset

14-15

14 Using IVI Drivers

Component Description

Software module |A software module is instrument-specific, and contains the
commands and functions necessary to communicate with the
instrument. The instrument vendor commonly provides software
modules, which you cannot edit from the MATLAB Command
Window.

Hardware asset A hardware asset identifies a communication port connected

the instrument. Configure this component with an
I0ResourceDescriptor. Usually you have one hardware asset
per connection location (protocol type, bus address, and so on).

Driver session A driver session makes the association between a software module
and a hardware asset. Generally, you have a driver session for each
instrument at each of its possible locations.

Identical instruments connected at different locations can use the
same software module, but because they have different hardware
assets, they require different driver sessions.

Different kinds of instruments connected to the same location

(at different times) use the same hardware asset, but can have
different software modules. Therefore, they require different driver
sessions.

Logical name A logical name is a configuration store component that provides
access to a driver session. You can interpret a logical name as a
configurable pointer to a driver session. In a typical setup, the
code communicates with an instrument via a logical name. If the
code must communicate with a different instrument (for example,
a similar scope at a different location), update only the logical
name within the IVI configuration store to point to the new driver
session. You need not rewrite any code because it uses the same
logical name.

Configuring an IVI Configuration Store
Using the GUI

You can use the Test & Measurement Tool to examine or configure your IVI configuration
store. Open the tool by typing:

14-16

IVI Configuration Store

tmtool

Expand the Instrument Drivers node and click IVL

est & Measurement Tool

: =] 3
File Wiew Tools Help
)
|1& 58|
Test & Measurement L1 View Help
4.\ Instrument Cortral Toolbosx)) - o)
— Configuration store: DA pplications\ W IDatalviConfigurationStore xml
=2 Harcware
L i - A
. Instrument Objects Logical Mames Driver Sessions | Software Modules | Hardware Assets
Instrument Drivers
Mame:
MATLAE Inatrume IT = E—
Vidlplugaplay Drive ekScope. DriverSession
Description:
ITekSc:ope driver session description
Driver setup:
Software module: Hardware asset:
I TekScope Software LI I TekScope Hardware LI
Physical Marme “irtual Narne |
Channelt Channelt :I
Channel2 Channel2 =
Channel3 Channel3
Channeld Channeld
Math Math -
v cache r Interchange check
i Guery instrument status r Range check
A | Remove | [™ Record coercions [simulate
Hi—
4

You see a tab for each type of IVI configuration store element. This figure shows the
available driver sessions in the current IVI configuration store. For the selected driver
session, you can use any available software module or hardware asset. This figure shows
the configuration for the driver session TekScope.DriverSession, which uses the
software module TekScope . Software and the hardware asset TekScope.Hardware.

Using the Command Line

Alternatively, you can use command-line functions to examine and configure your IVI
configuration store. To see what IVI configuration store elements are available, use
instrhwinfo to identify the existing logical names.

instrhwinfo("ivi®)
ans =
LogicalNames: {"MainScope®, “FuncGen"}

14-17

14 Using IVI Drivers

14-18

ProgramlDs: {"TekScope.TekScope~®,"Agilent33250"}
Modules: {"ag3325b*", "hpe363xa”}
ConfigurationServerVersion: "1.6.0.10124"
MasterConfigurationStore: "C:\Program Files\IVI\Data\
IviConfigurationStore.xml*
IVIRootPath: "C:\Program Files\IVI\~

Use instrhwinfo with a logical name as an argument to see the details of the
configuration.

instrhwinfo("ivi", "MainScope™)
ans =
DriverSession: "TekScope.DriverSession”
HardwareAsset: "TekScope.Hardware*
SoftwareModule: "TekScope.Software”
I0ResourceDescriptor: "GPIB0::13::INSTR"
SupportedInstrumentModels: "TekScope 5000, 6000 and 7000 series”
ModuleDescription: "TekScope software module desc*”
ModulelLocation: "~

You can use the command line to change the configuration store. Here is an example of
changing it programmatically.

% Construct a configStore.
configStore = iviconfigurationstore;

% Set up the hardware asset with name myScopeHWAsset, and resource descriptor
% TCPIPO: :a-m6104a-004598: - INSTR.
add(configStore, “HardwareAsset®, "myScopeHWAsset®", “TCPIPO::a-m6104a-004598::INSTR");

% Add a driver session with name myScopeSession, and use the asset created in the step above.
% Ag546XX is the Agilent driver.

add(configStore, "DriverSession®, "myScopeSession®, “Ag546XX", “myScopeHWAsset");

% Add a logical name to the configStore, with name myScope and driver session

% named myScopeSession.

add(configStore, “LogicalName®, “myScope®, "myScopeSession-®);

% Save the changes to the IVl configuration store data file.
commit(configStore);

% You can verify that the steps you just performed worked.
logicalNamelnfo = instrhwinfo("ivi®, “myscope®)

Basic IVI Configuration Store

Following is an example of configuration used by data_analyzer.m.

IVI Configuration Store

IVI Configuration Store

TekScope.DriverSession

TekScope.Software

|data_ana1yzer.m I MainScope |—]

TekScope.Hardware |

Tektronix
5000 Series
Oscilloscope

GPIBO::13::INSTR oooo

Qoo

Create and configure elements in the IVI configuration store using the IVI configuration
store object methods add, commit, remove, and update. For further details, see the

reference pages for these methods.

IVI Configuration Store with Several Interchangeable Elements

The following figure shows an example of an IVI configuration store with several

interchangeable components. Code 1 requires access to the oscilloscopes at two different

locations (hardware asset X and hardware asset Y). The scopes are similar, so they
use the same software module S. Here, the scopes are at different locations (or the
same scope connected to two different locations at different times). Therefore, each

configuration requires its own driver session, in this example, driver session A and driver

session B.

IVI Configuration Store Driver Session A

Software
Module S

Hardware
Asset X

1/0

Code 1 Logical Driver Session B
Name 1 -

~ Software
~ Module S

Hardware
Asset Y

1/0

Qoo

Driver Session C

Software
Module G

| I Logical
Code 2 Name 2
Hardware

Asset Z

1/0

Qoo

DDDD
DO [eNeXe]

14-19

14 Using IVI Drivers

Write Code 1 to access logical name 1. You configure the name in the IVI configuration
store to access driver session A or driver session B (but not both at the same time).
Because you select the driver session in the IVI configuration store, you need not alter
the code to change access from one scope to the other.

14-20

Using IVI-C Class-Compliant Wrappers

Using IVI-C Class-Compliant Wrappers

In this section...
“IVI-C Wrappers” on page 14-21
“Prerequisites” on page 14-21

“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 14-22

“Reading Waveforms Using the IVI-C Class Compliant Interface” on page 14-22

“IVI-C Class Compliant Wrappers in Test & Measurement Tool” on page 14-23

IVI-C Wrappers

The IVI-C wrappers provide an interface to MATLAB for instruments running on IVI-C
class-compliant drivers.

This documentation example uses a specific instrument, an Agilent MSO6104A
oscilloscope. This feature works with any IVI-C class compliant instrument. You can
follow the basic steps, using your particular instrument if the device is IVI-C class
compliant.

Prerequisites

To use the wrapper you must have the following software installed.

* Windows 64-bit
* VISA shared components
+ VISA

The following example uses Agilent VISA, but you can use any version of VISA.
* National Instruments compliance package NICP 4.1

* Your instrument driver

You can use instrhwinfo to confirm that these software modules are installed.

% Check that the software is properly installed.
instrhwinfo("ivi*®)

14-21

14 Using IVI Drivers

14-22

Creating Shared Libraries or Standalone Applications When Using IVI-C
or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir, "I1CTDeploymentFiles” ,sprintf("R%s" ,version("-release")))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.m is generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file
by the name <driverName>_thunk pcwin64.dl1 is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

Reading Waveforms Using the IVI-C Class Compliant Interface

This example shows the general workflow to use with an IVI-C class-compliant device.
This example uses a specific instrument, an Agilent MSO6104A oscilloscope. This feature
works with any IVI-C class-compliant instrument. You can follow the basic steps using
your particular instrument if it is IVI-C class-compliant.

1 Ensure all necessary software is installed. See “Prerequisites” on page 14-21 for
the list.

2 Ensure that your instrument is recognized by the VISA utility. In this case, open
Agilent Connectivity Expert and make sure it recognizes the oscilloscope.

3 Set up the logical name using the Configuration Store. The VISA resource string
shown in this code was acquired from the VISA utility in step 2.

% Construct a configStore.
configStore = iviconfigurationstore;

% Set up the hardware asset called myScopeHWAsset, and resource description
TCPIPO: :a-m6104a-004598: : INSTR.
add(configStore, "HardwareAsset®, "myScopeHWAsset", "TCPIPO::a-m6104a-004598::INSTR");

% Add a driver session called myScopeSession, and use the asset created in the
step above. Ag546XX is the Agilent driver version.
add(configStore, "DriverSession®, "myScopeSession®, "Ag546XX", "myScopeHWAsset");

% Add a logical name to the configStore called myScope and driver session called
myScopeSession.

Using IVI-C Class-Compliant Wrappers

add(configStore, "LogicalName®, "myScope®, "myScopeSession”);

% Save the changes to the 1Vl configuration store data file.
commit(configStore);

% You can verify that the steps you just performed worked.
logicalNamelnfo = instrhwinfo("ivi®, "myscope®)
For more information about the configuration store, see “IVI Configuration Store” on
page 14-15.
4 Create an instance of the scope.
% Instantiate an instance of the scope.
ivicScope = instrument.ivic.lviScope();
5 Connect to the instrument.
% Open the hardware session.
ivicScope.init("myScope®, true, true);
6 Communicate with the instrument. For example, read a waveform.

% Use the AutoSetup method to automatically set up the oscilloscope.
ivicScope.Configuration.AutoSetup();

% Create a record length variable.
recordLength = ivicScope.Acquisition.Horizontal_Record_Length;

% Preallocate buffer to store the data read from the scope.
waveformArray = zeros(l, recordLength);

% Read a waveform with channel name set to channell and timeout to 1000.
[waveformArray,actualPoints, initiaX,xIncrement] = ivicScope.WaveformAcquisition.
ReadWaveform(*channell®, recordLength, 1000, waveformArray);

% Plot the waveform and assign labels for the plot.
plot(waveformArray);

xlabel ("Samples®);

ylabel ("Voltage®);

7 After configuring the instrument and retrieving its data, close the session and
remove it from the workspace.

ivicScope.close();
clear ivicScope;

IVI-C Class Compliant Wrappers in Test & Measurement Tool

You can also use the IVI-C Wrappers functionality from the Test & Measurement Tool.
View the IVI-C nodes by setting a preference in MATLAB.

14-23

14 Using IVI Drivers

14-24

1 In MATLAB, on the Home tab, in the Environment section, click Preferences.
Then select Instrument Control in the Preferences dialog box.

2 Select the Show IVI Instruments in TMTool option in the IVI Instruments
section.

If you do not have the required software installed, you will get a message indicating
that. See “Prerequisites” on page 14-21 for the list of required software.

3 Start the Test & Measurement Tool (using the tmtool function), and the new IVI
Instruments node appears under Instrument Drivers.

For information on using it in the Test & Measurement Tool, see the Help within the
tool by selecting the IVI Instruments node in the tree once it is visible after setting the
MATLAB preference.

Using Quick-Control Oscilloscope

Using Quick-Control Oscilloscope

In this section...

“Quick-Control Oscilloscope” on page 14-25

“Quick-Control Oscilloscope Prerequisites” on page 14-25

“Reading Waveforms Using the Quick-Control Oscilloscope” on page 14-26
“Reading a Waveform Using a Tektronix Scope” on page 14-28
“Quick-Control Oscilloscope Functions” on page 14-31

“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 14-33

Quick-Control Oscilloscope

You can use the Quick-Control Oscilloscope for any oscilloscope that uses an underlying
IVI-C driver. However, you do not have to directly deal with the underlying driver.

You can also use it for Tektronix oscilloscopes. This oscilloscope object is an easy to use
interface.

This documentation example uses a specific instrument, an Agilent MSO6104
oscilloscope. This feature works with any IVI-C class oscilloscope. You can follow the
basic steps, using your particular instrument.

Quick-Control Oscilloscope Prerequisites

Using IVI-C

To use the Quick-Control Oscilloscope for an IVI-C scope, you must have the following
software installed.

* Windows 64-bit platforms
* VISA shared components
+ VISA

Note, the following example uses Agilent VISA, but you can use any version of VISA.
* National Instruments IVI compliance package NICP 4.1
* Your instrument’s device-specific driver

You can use instrhwinfo to confirm that the required software is installed.

14-25

14 Using IVI Drivers

14-26

% Check that the software is properly installed.
instrhwinfo("ivi"®)

Reading Waveforms Using the Quick-Control Oscilloscope

This example shows the general workflow to use for the Quick-Control Oscilloscope. This
example uses a specific instrument, an Agilent MS0O6104 oscilloscope. This feature works
with any oscilloscope using an IVI-C driver. You can follow the basic steps using your
particular scope. For use with a Tektronix scope, see the example in the next section.

1 Ensure all necessary software is installed. See “Quick-Control Oscilloscope
Prerequisites” on page 14-25 for the list.

2 Ensure that your instrument is recognized by the VISA utility. In this case, open
Agilent Connectivity Expert and make sure it recognizes the oscilloscope.

3 Create an instance of the oscilloscope.

% Instantiate an instance of the scope.
myScope = oscilloscope()

4 Discover available resources. A resource string is an identifier to the instrument.
You must set it before connecting to the instrument.

% Find resources.
availableResources = getResources(myScope)

This returns a resource string or an array of resource strings.

availableResources =
TCPIPO: :a-m6104a-004598.dhcp.mathworks.com: : instO: : INSTR

5 Connect to the scope.

If multiple resources are available, use the VISA utility to verify the correct resource
and set it.

myScope.Resource = "TCPIPO::a-m6104a-004598: :inst0:: INSTR";

% Connect to the scope.
connect(myScope) ;

6 Configure the oscilloscope.

You can configure any of the scope’s properties that are able to be set. In this
example enable channel 1 and configure various acquisition settings as shown.

Using Quick-Control Oscilloscope

% Automatically configure the scope based on the input signal.
autoSetup(myScope) ;

% Set the acquisition time to 0.01 second.
myScope.AcquisitionTime = 0.01;

% Set the acquisition to collect 2000 data points.
myScope .WaveformLength = 2000;

14-27

14 Using IVI Drivers

14-28

% Set the trigger mode to normal.
myScope.TriggerMode = "normal”;

% Set the trigger level to 0.1 volt.
myScope.TriggerLevel = 0.1;

% Enable channel 1.
enableChannel (myScope, "CH1%);

% Set the vertical coupling to AC.
setVerticalCoupling (myScope, "CH1", “"AC");

% Set the vertical range to 5.0.
setVerticalRange (myScope, "CH1", 5.0);

7 Communicate with the instrument. For example, read a waveform.

In this example, the getWaveform function returns the waveform that was acquired
using the front panel of the scope. The function can also initiate an acquisition on the
enabled channel and then return the waveform after the acquisition. For examples
on all the use cases for this function, see getWaveform.

% Acquire the waveform.
waveformArray = getWaveform(myScope);

% Plot the waveform and assign labels for the plot.
plot(waveformArray);

xlabel ("Samples™);

ylabel ("Voltage~);

8 After configuring the instrument and retrieving its data, close the session and
remove it from the workspace.

disconnect(myScope) ;
clear myScope;

Reading a Waveform Using a Tektronix Scope

Reading a waveform with a Tektronix scope using Quick-Control Oscilloscope is basically
the same workflow as described in the previous example using an Agilent scope with
VISA. But the resource and driver information is different.

If you use the getResources function, instead of getting a VISA resource string as
shown in step 4 of the previous example, you will get the interface resource of the
Tektronix scope. For example:

% Find resources.

Using Quick-Control Oscilloscope

availableResources = getResources(myScope)

This returns the interface resource information.

availableResources =
GPIBO::AGILENT::7::10

Where gpib is the interface being used, agi lent is the interface type for the adaptor
that the Tektronix scope is connected to, and the numbers are interface constructor
parameters.

If you use the getDrivers function, you get information about the driver and its
supported instrument models. For example:

% Get driver information.
drivers = getDrivers(myScope)

This returns the driver and instrument model information.

Driver: tekronix

Supported Models:
TDS200, TDS1000, TDS2000, TDS1000B, TDS2000B, TPS2000
TDS3000, TDS3000B, MS04000, DP04000, DPO7000, DPO7000B

This example shows the general workflow to use for the Quick-Control Oscilloscope for
a Tektronix scope. This feature works with any supported oscilloscope model. You can
follow the basic steps using your particular scope.

14-29

14 Using IVI Drivers

14-30

Create an instance of the oscilloscope.

% Instantiate an instance of the scope.

myScope = oscilloscope()

Discover available resources. A resource string is an identifier to the instrument.

You must set it before connecting to the instrument.

% Find resources.
availableResources = getResources(myScope)

This returns a resource string or an array of resource strings.

availableResources =
GPIBO::AGILENT::7::10

Where gpib is the interface being used, agi lent is the interface type for the
adaptor that the Tektronix scope is connected to, and the numbers are interface
constructor parameters.

Connect to the scope.
% Connect to the scope.
connect(myScope) ;

Configure the oscilloscope.

You can configure any of the scope’s properties that are able to be set. In this
example enable channel 1 and set acquisition time as shown. You can see examples
of other acquisition parameters in step 6 of the previous example.

% Set the acquisition time to 0.01 second.
myScope.AcquisitionTime = 0.01;

% Set the acquisition to collect 2000 data points.
set(myScope, “WaveformLength®, 2000);

% Enable channel 1.
enableChannel (myScope, "CH1%);

Communicate with the instrument. For example, read a waveform.

In this example, the getWaveform function returns the waveform that was acquired
using the front panel of the scope. The function can also initiate an acquisition on the
enabled channel and then return the waveform after the acquisition. For examples
on all the use cases for this function, see getWaveform.

% Acquire the waveform.

Using Quick-Control Oscilloscope

waveformArray = getWaveform(myScope);

% Plot the waveform and assign labels for the plot.
plot(waveformArray) ;

xlabel ("Samples®);

ylabel ("Voltage®);

6 After configuring the instrument and retrieving its data, close the session and
remove it from the workspace.

disconnect(myScope);
clear myScope;

Quick-Control Oscilloscope Functions

The oscilloscope function can use the following special functions, in addition to
standard functions such as connect and disconnect.

Function Description

autoSetup Automatically configures the instrument based on the input
signal.
autoSetup(myScope) ;

disableChannel Disables the oscilloscope's channel(s).

disableChannel (myScope, “"Channell*®);
disableChannel (myScope, {"Channell®, "Channel2"});

enableChannel Enables the oscilloscope's channel(s) from which
waveform(s) will be retrieved.

enableChannel (myScope, "Channell®);
enableChannel (myScope, {"Channell®, "Channel2"});

getDrivers Returns a list of available drivers with their supported
instrument models.

drivers = getDrivers(myScope);

getResources Retrieves a list of available resources of instruments. It
returns a list of available VISA resource strings when using
an IVI-C scope. It returns the interface resource information
when using a Tektronix scope.

res = getResources(myScope);

14-31

14 Using IVI Drivers

14-32

Function

Description

getVerticalCoupling

Returns the value of how the oscilloscope couples the
input signal for the selected channel name as a MATLAB
character vector. Possible values returned are "AC*®, "DC*",
and "GND".

VC = getVerticalCoupling (myScope, "Channell®);

getVerticalOffset

Returns the location of the center of the range for the
selected channel name as a MATLAB character vector. The
units are volts.

VO = getVerticalOffset (myScope, "Channell®);

getVerticalRange

Returns the absolute value of the input range the
oscilloscope can acquire for selected channel name as a
MATLAB character vector. The units are volts.

VR = getVerticalRange (myScope, "Channell®);

getWaveform

Returns the waveform(s) displayed on the scope screen.
Retrieves the waveform(s) from enabled channel(s).

w = getWaveform(myScope);

reset

Resets the device.

reset(myScope) ;

setVerticalCoupling

Specifies how the oscilloscope couples the input signal for
the selected channel name as a MATLAB character vector.
Values are "AC*", "DC", and "GND".

setVerticalCoupling (myScope, "Channell®, "AC%);

setVerticalOffset

Specifies the location of the center of the range for the
selected channel name as a MATLAB character vector. For
example, to acquire a sine wave that spans from 0.0 to 10.0
volts, set this attribute to 5.0 volts.

setVerticalOffset (myScope, "Channell®, 5);

setVerticalRange

Specifies the absolute value of the input range the
oscilloscope can acquire for the selected channel name as a
MATLAB character vector. The units are volts.

setVerticalRange (myScope, "Channell®, 10);

Using Quick-Control Oscilloscope

Creating Shared Libraries or Standalone Applications When Using IVI-C
or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir, "1CTDeploymentFiles” ,sprintf("R%s" ,version("-release")))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.mis generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file
by the name <driverName>_thunk_pcwin64.dl1 is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

14-33

14 Using IVI Drivers

Using Quick-Control Function Generator

14-34

In this section...

“Quick-Control Function Generator” on page 14-34

“Quick-Control Function Generator Prerequisites” on page 14-34

“Generating Waveforms Using the Quick-Control Function Generator” on page 14-35
“Quick-Control Function Generator Functions” on page 14-38

“Quick-Control Function Generator Properties” on page 14-41

“Creating Shared Libraries or Standalone Applications When Using IVI-C or VXI” on
page 14-44

Quick-Control Function Generator

A new way to communicate with instruments, Quick-Control Instruments, was
introduced in R2011b with the Quick-Control Oscilloscope. In R2012a, a second
instrument class is introduced — the Quick-Control Function Generator. You can use this
new function generator, or fgen, for simplified fgen control and waveform generation.

Create the Quick-Control Function Generator object using the Instrument Control
Toolbox Fgen function. It simplifies controlling function generators and performs
arbitrary waveform generations without dealing with the underlying drivers.

You can use the Quick-Control Function Generator for any function generator that
uses an underlying IVI-C driver. However, you do not have to directly deal with the
underlying driver. This fgen object is easy to use.

The documentation examples use a specific instrument, a Tektronix AFG 3022B function
generator. This feature works with any instrument that has IVI-C fgen class drivers. You
can follow the basic steps, using your particular instrument.

Quick-Control Function Generator Prerequisites

To use the Quick-Control Function Generator for an IVI-C fgen, ensure the following
software is installed:

* Windows 64-bit platforms
* VISA shared components

Using Quick-Control Function Generator

+ VISA

Note, the following examples use Agilent VISA, but you can use any vendor’s
implementation of VISA.

* National Instruments IVI compliance package NICP 4.1 or 4.3

* Your instrument’s device-specific driver

You can use instrhwinfo to confirm that the required software is installed.

% Check that the software is properly installed.
instrhwinfo("ivi"®)

Generating Waveforms Using the Quick-Control Function Generator

The first example shows the general workflow to use for the Quick-Control Function
Generator for a standard waveform. The second example shows the general workflow to
use for the Quick-Control Function Generator for an arbitrary waveform. These examples
use a specific instrument, but they work with any function generator using an IVI-C
driver as long as the instrument and the driver support the functionality. You can follow
the basic steps using your particular function generator.

Generate Standard Waveform

In this example, an electronic test engineer wants to create a simple sine waveform to
test the clock operating range of a digital circuit.

1 Ensure all necessary software is installed. See “Quick-Control Function Generator
Prerequisites” on page 14-34 for the list.

2 Create an instance of the function generator.

% Instantiate an instance of the fgen.
myFGen = fgen();

3 Discover available resources. A resource string is an identifier to the instrument.
You must set it before connecting to the instrument.

% Find resources.
availableResources = getResources(myFGen)

This returns a resource string or an array of resource strings, for example:

ans =

14-35

14 Using IVI Drivers

14-36

ASRL: :COM1

GPIBO::INTFC

GPIBO::10::INSTR

PX10: :MEMACC
TCPIP0::172.28.16.153::inst0::INSTR
TCPIP0::172.28.16.174:-:inst0::INSTR

Set the resource for the function generator you want to communicate with.

myFGen._.Resource = "GPIB0O::10::INSTR";

Connect to the function generator.

connect(myFGen) ;

Specify the channel name from which the function generator produces the waveform.

selectChannel (myFGen, "1%);

Configure the function generator.

You can configure any of the instrument’s properties that are settable. Configure
the waveform to be a continuous sine wave and then configure various settings as
shown.

% Set the type of waveform to a sine wave.
myFGen.Waveform = "sine”;

% Set the output mode to continuous.
myFGen.Mode = "continuous”®;

% Set the load impedance to 50 Ohms.
myFGen .Outputlmpedance = 50;

% Set the frequency to 2500 Hz.
myFGen.Frequency = 2500;

% Set the amplitude to 1.2 volts.
myFGen.Amplitude = 1.2;

% Set the offset to 0.4 volts.
myFGen.Offset = 0.4;

Enable signal generation with the instrument, for example, output signals.

In this example, the enableOutput function enables the function generator to
produce a signal that appears at the output connector.

% Enable the output of signals.
enableOutput(myFGen);

Using Quick-Control Function Generator

When you are done, disable the output.

% Disable the output of signals.
disableOutput(myFGen);

After configuring the instrument and generating a signal, close the session and
remove it from the workspace.

disconnect(myFGen);
clear myFgen;

Generate Arbitrary Waveform

In this example, an electronic design engineer wants to generate a complex waveform
with MATLAB, then download them into the function/arbitrary waveform generator and
output them one after the other, and then finally remove the downloaded waveforms
afterward. In this example we are using the GPIB interface.

1

Ensure all necessary software is installed. See “Quick-Control Function Generator
Prerequisites” on page 14-34 for the list.

Create an instance of the function generator.

% Instantiate an instance of the fgen.
myFGen = fgen();

Set the resource.

myFGen.Resource = "GPIBO::10::INSTR";

Connect to the function generator.

connect(myFGen) ;

Specify the channel name from which the function generator produces the waveform.

selectChannel (myFGen, "1%);

Configure the function generator.

You can configure any of the instrument’s properties that are settable. Configure the
waveform to be a continuous arbitrary wave.

% Set the type of waveform to an arbitrary wave.
myFGen.Waveform = “arb®;

% Set the output mode to continuous.
myFGen.Mode = “continuous”®;

14-37

14 Using IVI Drivers

14-38

7 Communicate with the instrument.

In this example, create the waveform, then download it to the function
generator using the downloadWaveform function. Then enable the output
using the enableOutput function, and then remove the waveform using the
removeWaveform function.

% Create the waveform.

wl = 1:0.001:2;

% Download the waveform to the function generator.
hl = downloadWaveform (myFGen, wl);

% Enable the output.

enableOutput(myFGen);

When you are done, remove the waveforms.

% Remove the waveform.
removeWaveform(myFGen) ;

8 After communicating with the instrument, close the session and remove it from the

workspace.

disconnect(myFGen);
clear myFgen;

Quick-Control Function

Generator Functions

The fgen function uses the following functions, in addition to standard functions such as

connect and disconnect.

Function Description
selectChannel Specifies the channel name from which the function
generator produces the waveform.
Example:
selectChannel (myFGen, "1%);
getDrivers Returns a list of available function generator instrument

drivers.

Example:

Using Quick-Control Function Generator

Function

Description

drivers = getDrivers(myFGen);

See the note following this table about using a SCPI-based
driver for Agilent function generators.

getResources

Retrieves a list of available instrument resources. It returns
a list of available VISA resource strings when using an IVI-
C function generator.

Example:

res = getResources(myFGen);

selectWaveform

Specifies which arbitrary waveform the function generator
produces.

Example:

selectWaveform (myFGen, wh);

where wh is the waveform handle you are selecting.

downloadWaveform

Downloads an arbitrary waveform to the function generator.
If you provide an output variable, a waveform handle is
returned. It can be used in the selectWaveform and
removeWaveform functions.

If you don't provide an output variable, function generator
overwrites the waveform when a new waveform is
downloaded and deletes it upon disconnection.

Example:

% Download the following waveform to fgen
w = 1:0.001:2;
downloadWaveform (myFGen, w);

% Download a waveform to fgen and return
a waveform handle
wh = downloadWaveform (myFGen, w);

14-39

14 Using IVI Drivers

Function Description

removeWaveform Removes a previously created arbitrary waveform from
the function generator's memory. If a waveform handle
is provided, it removes the waveform represented by the
waveform handle.

Example:

% Remove a waveform from fgen with waveform
handle 10000
removeWaveform (myFGen, 10000);

enableOutput Enables the function generator to produce a signal that
appears at the output connector. This function produces
a waveform defined by the Waveform property. If the
Waveform property is set to "Arb™, the function uses the
latest internal waveform handle to output the waveform.

enableOutput (myFGen);

disableOutput Disables the signal that appears at the output connector.
Disables the selected channel.

disableOutput (myFGen);

reset Sets the function generator to factory state.

Using a SCPI-based Driver for Agilent Function Generators

If you are using a SCPI-based Agilent function generator such as the 33220A, you will
see the following when you use the getDrivers function on an fgen object myFGen.

drivers = getDrivers(myFGen);

drivers
Driver: Agilent332x0_SCPI

Supported Models:
33210A, 33220A, 33250A

The _SCP1 after the instrument name indicates this is using a SCPI driver instead of the
IVI driver.

14-40

Using Quick-Control Function Generator

Quick-Control Function Generator Properties

The fgen function can use the following properties.

Property

Description

AMDepth

Specifies the extent of Amplitude modulation the function
generator applies to the carrier signal. The units are a
percentage of full modulation. At 0% depth, the output
amplitude equals the carrier signal's amplitude. At

100% depth, the output amplitude equals twice the
carrier signal's amplitude. This property affects function
generator behavior only when the Mode is set to "AM® and
ModulationResource is set to "internal *.

Amplitude

Specifies the amplitude of the standard waveform. The value
1s the amplitude at the output terminal. The units are volts
peak-to-peak (Vpp). For example, to produce a waveform
ranging from -5.0 to +5.0 volts, set this value to 10.0 volts.
Does not apply if Waveform is of type "Arb*.

ArbWaveformGain

Specifies the factor by which the function generator scales
the arbitrary waveform data. Use this property to scale the
arbitrary waveform to ranges other than -1.0 to +1.0. When
set to 2.0, the output signal ranges from -2.0 to +2.0 volts.
Only applies if Waveform is of type "Arb*.

BurstCount

Specifies the number of waveform cycles that the function
generator produces after it receives a trigger. Only applies if
Mode is set to "burst”®.

ChannelNames

This read-only property provides available channel names in
a cell array.

Driver

This property is optional. Use only if necessary to specify the
underlying driver used to communicate with an instrument.
If the DriverDetectionMode property is set to "manual ",
use the Driver property to specify the instrument driver.

DriverDetectionMode

Sets up criteria for connection. Valid values are "auto”
and "manual . The default value is "auto”, which means
you do not need to set a driver name before connecting to
an Instrument. If set to "manual ", a driver name needs to

14-41

14 Using IVI Drivers

Property

Description

be provided using the Driver property before connecting to
instrument.

FMDeviation

Specifies the maximum frequency deviation the modulating
waveform applies to the carrier waveform. This deviation
corresponds to the maximum amplitude level of the
modulating signal. The units are Hertz (Hz). This property
affects function generator behavior only when Mode is set to
"FM*® and ModulationSource is set to "internal .

Frequency

Specifies the rate at which the function generator outputs
an entire arbitrary waveform when Waveform is set to
"Arb". It specifies the frequency of the standard waveform
when Waveform is set to standard waveform types. The
units are Hertz (Hz).

Mode

Specifies run mode. Valid values are "continuous”,
"burst”®, "AM", or "FM*. Specifies how the function
generator produces waveforms. It configures the instrument
to generate output continuously or to generate a discrete
number of waveform cycles based on a trigger event. It can
also be set to AM and FM.

ModulationFrequency

Specifies the frequency of the standard waveform that the
function generator uses to modulate the output signal.
The units are Hertz (Hz). This attribute affects function
generator behavior only when Mode is set to "AM® or

"FM® and the ModulationSource attribute is set to
"internal”.

ModulationSource

Specifies the signal that the function generator uses to
modulate the output signal. Valid values are "internal®
and "external ". This attribute affects function generator
behavior only when Mode is set to "AM™ or "FM*.

ModulationWaveform

Specifies the standard waveform type that the function
generator uses to modulate the output signal. This affects
function generator behavior only when Mode is set to "AM*®
or "FM® and the ModulationSource is set to "internal *.
Valid values are "sine”, "square”, "triangle”,
"RampUp*®, "RampDown*, and "DC".

14-42

Using Quick-Control Function Generator

Property

Description

Offset

Uses the standard waveform DC offset as input arguments
if the waveform is not of type "Arb*". Use Arb Waveform
Offset as input arguments if the waveform is of type "Arb*.

Specifies the DC offset of the standard waveform when
Waveform is set to standard waveform. For example, a
standard waveform ranging from +5.0 volts to 0.0 volts has a
DC offset of 2.5 volts. When Waveform is set to "Arb*®, this
property shifts the arbitrary waveform's range. For example,
when it is set to 1.0, the output signal ranges from 2.0 volts
to 0.0 volts.

Outputlmpedance

Specifies the function generator's output impedance at the
output connector.

Resource

Set this before connecting to the instrument. It is the VISA
resource string for your instrument.

SelectedChannel

Returns the selected channel name that was set using the
selectChannel function.

StartPhase

Specifies the horizontal offset in degrees of the standard
waveform the function generator produces. The units are
degrees of one waveform cycle. For example, a 180-degree
phase offset means output generation begins halfway
through the waveform.

Status

This read-only property indicates the communication
status of your instrument session. It is either "open*® or
"closed”.

TriggerRate

Specifies the rate at which the function generator's internal
trigger source produces a trigger, in triggers per second.
This property affects function generator behavior only when
the TriggerSource is set to "internal *. Only applies if
Mode is set to "burst-.

TriggerSource

Specifies the trigger source. After the function generator
receives a trigger, it generates an output signal if Mode
is set to "burst”. Valid values are "internal " or
“external ".

14-43

14 Using IVI Drivers

14-44

Property Description

Waveform Uses the waveform type as an input argument. Valid values
are "Arb", for an arbitrary waveform, or these standard
waveform types — "Sine”", "Square”, "Triangle”,
"RampUp*, "RampDown*®, and "DC".

Creating Shared Libraries or Standalone Applications When Using IVI-C
or VXI

When using IVI-C or VXI Plug&Play drivers, executing your code will generate
additional file(s) in the folder specified by executing the following code at the MATLAB
prompt:

fullfile(tempdir, "ICTDeploymentFiles” ,sprintf("R%s" ,version("-release")))

On all supported platforms, a file with the name
MATLABPrototypeFor<driverName>.mis generated, where <driverName> the name
of the IVI-C or VXI Plug&Play driver. With 64-bit MATLAB on Windows, a second file
by the name <driverName>_thunk pcwin64._dl1 is generated. When creating your
deployed application or shared library, manually include these generated files. For more
information on including additional files refer to the MATLAB Compiler documentation.

Instrument Support Packages

* “Instrument Control Toolbox Supported Hardware” on page 15-2

+ “Install the Ocean Optics Spectrometers Support Package” on page 15-4

* “Install the NI-SCOPE Oscilloscopes Support Package” on page 15-6

* “Install the NI-FGEN Function Generators Support Package” on page 15-8
+ “Install the NI-DCPower Power Supplies Support Package” on page 15-10
* “Install the NI-DMM Digital Multimeters Support Package” on page 15-12
* “Install the NI-845x I2C/SPI Interface Support Package” on page 15-14

+ “Install the Total Phase Aardvark I2C/SPI Interface Support Package” on page
15-15

* “Install the NI-Switch Hardware Support Package” on page 15-16

* “Install the National Instruments VISA and ICP Interfaces Support Package” on page
15-18

+ “Install the Keysight IO Libraries and VISA Interface Support Package” on page
15-20

15 instrument Support Packages

Instrument Control Toolbox Supported Hardware

As of this release, Instrument Control Toolbox supports the following hardware in
support packages. For a complete list of supported interfaces and platforms that do not
require support packages, see “Supported Hardware” on page 1-12.

Support Package Vendor Earliest Release Last Release Available
Available

Ocean Optics Spectrometers |Ocean Optics R2013b Current

National Instruments NI- National Instruments |R2013b Current

SCOPE Oscilloscopes

National Instruments NI- National Instruments |R2013b Current

FGEN Function Generators

National Instruments NI- National Instruments |R2014a Current

DCPower Power Supplies

National Instruments NI- National Instruments |R2014a Current

DMM Digital Multimeters

National Instruments National Instruments |R2014b Current

NI-845x I2C/SPI Interface

Total Phase Aardvark I12C/ |Total Phase R2014b Current

SPI Interface

National Instruments NI- National Instruments |R2014b Current

Switch Hardware

National Instruments VISA |National Instruments [R2015a Current

and ICP Interfaces

Documentation:

“Instrument Control

Toolbox Support Package for

National Instruments VISA

and ICP Interfaces”

Keysight IO Libraries and |Keysight R2015b Current

VISA Interface

For a complete list of supported hardware, see Hardware Support.

15-2

http://www.mathworks.com/hardware-support/instrument-control-software.html

Instrument Control Toolbox Supported Hardware

For a list of Instrument Control Toolbox supported interfaces and platforms, see
“Supported Hardware” on page 1-12.

15-3

15

Instrument Support Packages

Install the Ocean Optics Spectrometers Support Package

15-4

You can use Instrument Control Toolbox to communicate with Ocean Optics USB
spectrometers. You can acquire data from the spectrometer and control it. Ocean Optics
manufactures a broad line of USB-powered spectrometers covering the visible, near IR,
and UV portions of the spectrum. You can use these spectrometers from MATLAB on
Windows and Macintosh platforms.

The Instrument Control Toolbox Support Package for Ocean Optics Spectrometers lets
you use MATLAB for comprehensive control of any spectrometer that is supported by the
Ocean Optics OmniDriver software (version 2.12 or higher). You can perform many tasks,
including:

* Acquire a spectrum

* Set the integration time

* Enable dark current and nonlinear spectral corrections

+ View all connected devices

For a list of supported devices, see http://www.mathworks.com/hardware-support/ocean-
optics-spectrometers.html.

This feature is available through the Hardware Support Packages. Using this
installation process, download and install the following file(s) on your host computer:
+ MATLAB Instrument Driver for Ocean Optics support

* Ocean Optics OmniDriver version 2.2 driver files

* An example that shows how to take measurements with an Ocean Optics
spectrometer

Note: You can use this support package on a host computer running on 64-bit Windows
or 64-bit Mac operating systems that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for Ocean Optics
Spectrometers:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

http://www.mathworks.com/hardware-support/ocean-optics-spectrometers.html
http://www.mathworks.com/hardware-support/ocean-optics-spectrometers.html

Install the Ocean Optics Spectrometers Support Package

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-5

15

Instrument Support Packages

Install the NI-SCOPE Oscilloscopes Support Package

15-6

You can use Instrument Control Toolbox to communicate with NI-SCOPE oscilloscopes.
You can acquire waveform data from the oscilloscope and control it.

This feature is available through the Instrument Control Toolbox Support Package for
NI-SCOPE Oscilloscopes. Using this installation process, you download and install the
following file(s) on your host computer:

+ MATLAB Instrument Driver for NI-SCOPE support

+ National Instruments driver file: NI-SCOPE driver version 3.9.7

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Supported Compiler Requirement

Certain functionality in the NI-SCOPE support package may require a supported
compiler on your system. For the current list of supported compilers, see Supported and
Compatible Compilers on the MathWorks website.

Once you have installed a supported C compiler, set up your compiler by running mex -
setup, as described in the documentation for mex in the MATLAB Function Reference.

Installing the Support Package
To install the Instrument Control Toolbox Support Package for NI-SCOPE Oscilloscopes:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

http://www.mathworks.com/support/compilers/current_release
http://www.mathworks.com/support/compilers/current_release

Install the NI-SCOPE Oscilloscopes Support Package

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-7

15

Instrument Support Packages

Install the NI-FGEN Function Generators Support Package

15-8

You can use the Instrument Control Toolbox to communicate with NI-FGEN function
generators. You can control and configure the function generator, and perform tasks such
as generating sine waves.

This feature is available through the Instrument Control Toolbox Support Package for
NI-FGEN Function Generators. Using this installation process, you download and install
the following file(s) on your host computer:

+ MATLAB Instrument Driver for NI-FGEN support

* National Instruments driver file: NI-FGEN driver version 2.9.1

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Supported Compiler Requirement

Certain functionality in the NI-FGEN support package may require a supported
compiler on your system. For the current list of supported compilers, see Supported and
Compatible Compilers on the MathWorks website.

Once you have installed a supported C compiler, set up your compiler by running mex -
setup, as described in the documentation for mex in the MATLAB Function Reference.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-FGEN Function
Generators:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

http://www.mathworks.com/support/compilers/current_release
http://www.mathworks.com/support/compilers/current_release

Install the NI-FGEN Function Generators Support Package

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-9

15

Instrument Support Packages

Install the NI-DCPower Power Supplies Support Package

15-10

You can use Instrument Control Toolbox to communicate with NI-DCPower power
supplies. You can control and take digital measurements from a power supply, such as
the NI PXI 4011 triple-output programmable DC power supply.

This feature is available through the Instrument Control Toolbox Support Package for
NI-DCPower Power Supplies. Using this installation process, you download and install
the following file(s) on your host computer:

+ MATLAB Instrument Driver for NI-DCPower support

* National Instruments NI-DCPower driver file

+ Example that shows how to take digital measurements from an NI-DCPower power
supply

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Supported Compiler Requirement

Certain functionality in the NI-DCPower support package may require a supported
compiler on your system. For the current list of supported compilers, see Supported and
Compatible Compilers on the MathWorks website.

Once you have installed a supported C compiler, set up your compiler by running mex -
setup, as described in the documentation for mex in the MATLAB Function Reference.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-DCPower Power
Supplies:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

http://www.mathworks.com/support/compilers/current_release
http://www.mathworks.com/support/compilers/current_release

Install the NI-DCPower Power Supplies Support Package

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-11

15

Instrument Support Packages

Install the NI-DMM Digital Multimeters Support Package

15-12

You can use Instrument Control Toolbox to communicate with NI-DMM digital
multimeters. You can control and take measurements from a digital multimeter, such as
measuring voltage or resistance.

This feature is available through the Instrument Control Toolbox Support Package for
NI-DMM Digital Multimeters. Using this installation process, you download and install
the following file(s) on your host computer:

+ MATLAB Instrument Driver for NI-DMM support

* National Instruments NI-DMM driver file

+ Example that shows how to take digital measurements from a NI-DMM digital
multimeter

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Supported Compiler Requirement

Certain functionality in the NI-DMM support package may require a supported
compiler on your system. For the current list of supported compilers, see Supported and
Compatible Compilers on the MathWorks website.

Once you have installed a supported C compiler, set up your compiler by running mex -
setup, as described in the documentation for mex in the MATLAB Function Reference.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-DMM Digital
Multimeters:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

http://www.mathworks.com/support/compilers/current_release
http://www.mathworks.com/support/compilers/current_release

Install the NI-DMM Digital Multimeters Support Package

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-13

15

Instrument Support Packages

Install the NI-845x 12C/SPI Interface Support Package

15-14

For the Instrument Control Toolbox I2C and SPI interfaces, you can use either a Total
Phase Aardvark host adaptor or an NI-845x adaptor. To use the I2C or SPI interface
with the NI-845x adaptor, you must download this Hardware Support Package to obtain
the latest driver, if you do not already have the driver installed. If you already have the
latest driver installed, you do not need to download this Support Package.

To use the NI-845x driver, download and install the Instrument Control Toolbox Support
Package for NI-845x I2C/SPI Interface, which includes the following files on your host
computer:

* National Instruments NI-845x adaptor driver file
+ Example that shows how to use the NI-854x adaptor with the I12C interface

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for NI-845x 12C/SPI
Interface:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

Install the Total Phase Aardvark 12C/SPI Interface Support Package

Install the Total Phase Aardvark 12C/SPI Interface Support
Package

For the Instrument Control Toolbox I2C and SPI interfaces, you can use either a Total
Phase Aardvark host adaptor or an NI-845x adaptor. To use the I2C or SPI interface
with the Aardvark adaptor, you must download this Hardware Support Package to
obtain the necessary files. You must also download the USB device driver from the
vendor.

The Instrument Control Toolbox Support Package for Total Phase Aardvark 12C/SPI
Interface downloads and installs the Total Phase Aardvark host adaptor driver file on
your host computer. Examples of using the Aardvark adaptor with the I2C interface can
be found in the Instrument Control Toolbox documentation. For more information on
using Aardvark with the I2C and SPI interfaces, see “I2C Interface Overview” on page
9-2 and “SPI Interface Overview” on page 10-2.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for Total Phase Aardvark
I12C/SPI Interface:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-15

15

Instrument Support Packages

Install the NI-Switch Hardware Support Package

15-16

You can use Instrument Control Toolbox to communicate with NI-Switch instruments.
For example, you can control a relay box such as the NI PXI-2586 10-channel relay
switch.

This feature is available through the Instrument Control Toolbox Support Package
for NI-Switch Hardware. Using this installation process, you download and install the
following file(s) on your host computer

+ MATLAB Instrument Driver for NI-Switch support

+ National Instruments NI-Switch driver file

+ Example that shows how to control an NI-Switch relay switch

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Supported Compiler Requirement

Certain functionality in the NI-Switch support package may require a supported
compiler on your system. For the current list of supported compilers, see Supported and
Compatible Compilers on the MathWorks website.

Once you have installed a supported C compiler, set up your compiler by running mex -
setup, as described in the documentation for mex in the MATLAB Function Reference.

Installing the Support Package
To install the Instrument Control Toolbox Support Package for NI-Switch Hardware:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

http://www.mathworks.com/support/compilers/current_release
http://www.mathworks.com/support/compilers/current_release

Install the NI-Switch Hardware Support Package

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-17

15

Instrument Support Packages

Install the National Instruments VISA and ICP Interfaces Support
Package

15-18

The Instrument Control Toolbox Support Package for National Instruments VISA and
ICP Interfaces lets you use the Quick Control Oscilloscope and Quick Control Function
Generator interfaces.

After you download and install the support package, you can use the Quick Control
interfaces to communicate with oscilloscopes and function generators.

The support package installs the following files on your host computer:
MATLAB Instrument Driver for Quick Control Oscilloscope and Quick Control
Function Generator
VISA shared components
VISA
National Instruments IVI compliance package NICP 4.1 or later

The Instrument Control Toolbox Support Package for National Instruments VISA and
ICP Interfaces documentation

Note: You can use this support package only on a host computer running a version of 64-
bit Windows that Instrument Control Toolbox supports.

Installing the Support Package

To install the Instrument Control Toolbox Support Package for National Instruments
VISA and ICP Interfaces:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

Install the National Instruments VISA and ICP Interfaces Support Package

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

15-19

15

Instrument Support Packages

Install the Keysight 10 Libraries and VISA Interface Support
Package

15-20

The Instrument Control Toolbox Support Package for Keysight 10 Libraries and VISA
Interface simplifies the use of Keysight (formerly Agilent) VISA by installing the
necessary software components, such as the IO libraries and VISA shared components.

After you download and install the support package, you can use the VISA interface to
communicate with Keysight instruments.

The support package installs the following files on your host computer:

MATLAB Instrument Driver for Keysight VISA
Keysight IO libraries
Keysight VISA shared components

Installing the Support Package

To install the Instrument Control Toolbox Support Package for Keysight 10 Libraries
and VISA Interface:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

In the Add-On Explorer, scroll to the Hardware Support Packages section, and click
show all to find your support package.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage
Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

For more information about using Add-On Explorer, see “Get Add-Ons” (MATLAB).

Using Generic Instrument Drivers

This chapter describes the use of generic drivers for controlling instruments from the
MATLAB Command window, using the Instrument Control Toolbox software.

“Generic Drivers: Overview” on page 16-2
“Writing a Generic Driver” on page 16-3
“Using Generic Driver with Test & Measurement Tool” on page 16-8

“Using a Generic Driver at Command Line” on page 16-11

16 Using Generic Instrument Drivers

Generic Drivers: Overview

16-2

Generic drivers allow the Instrument Control Toolbox software to communicate with
devices or software that do not use industry-standard drivers or protocols.

Typical cases, but not the only possibilities, are instruments that offer access through

a COM interface (where the instrument can be accessed as an ActiveX® object from the
MATLAB workspace), that use proprietary libraries, or that use custom MEX-files.

Because the generic nature of this feature does not lend itself to detailed discussion of
specific instructions that work in all cases, the following sections of this chapter use an
example to illustrate how to create and use a MATLAB generic instrument driver:

* “Writing a Generic Driver” on page 16-3

+ “Using Generic Driver with Test & Measurement Tool” on page 16-8

+ “Using a Generic Driver at Command Line” on page 16-11

Writing a Generic Driver

Writing a Generic Driver

In this section...

“Creating the Driver and Defining Its Initialization Behavior” on page 16-3

“Defining Properties” on page 16-4

“Defining Functions” on page 16-7

Creating the Driver and Defining lts Initialization Behavior

In this example, the generic “instrument” that you control is Microsoft Internet Explorer”
(IE), which is represented by a COM object. (This example works only on Windows
systems.) Working through the example, you write a simple MATLAB instrument generic
driver that allows the Instrument Control Toolbox software to communicate with a COM
object. Using both a graphical interface and command-line code, with your driver you
create an IE browser window, control its size, and specify what Web page it displays. The
principles demonstrated in this example can be applied when writing a generic driver for
any kind of instrument.

In this section, you create a new driver and specify what happens when an object is
created for this driver.

1 Open the MATLAB Instrument Driver Editor from the MATLAB Command Window.
midedit

2 To make it known that this driver is a generic driver, in the MATLAB Instrument
Driver Editor, select File > New > Generic driver, as shown.

«): MATLAB Instrument Driver Editor

[File Edt Help
ey
Open...

Impart... Cirl+l 1’
Save Cirl+S

e P N

E p I -

3 Select File > Save as.

Navigate to the directory where you want to save your driver, and give it any name
you want. This example uses the name 1e_drv. Remember where you have saved
your driver.

16-3

16 Using Generic Instrument Drivers

16-4

4 Select the Summary node in the driver editor window. Set the fields of this pane with

any values you want. This example uses the following settings:

Manufacturer Microsoft
Supported models IE
Instrument type Browser
Driver version 1.0

5 Select the node Initialization and Cleanup.
6 Click the Create tab.

This is where you define the code to execute when this driver is used to create a
device object. This example identifies the COM object for Internet Explorer, and
assigns the handle to that object as the Interface property of the device object
being created.

7 Add the following lines of code to the Create tab:

ie = actxserver("internetexplorer.application®);
obj.Interface = ie);
8 Click the Connect tab.

This is where you define the code to execute when you connect your device object to
your instrument or software.
9 Add the following lines of code to the Connect tab:

ie = get(obj, "Interface®);
ie.Visible = 1);
ie.FullScreen = 0);

The first line gets 1e as a handle to the COM object, based on the assignment in the
Create code. The two lines after that set the window visibility and size.

Defining Properties

Writing properties for generic drivers in the MATLAB Instrument Driver Editor is a
matter of writing straight code.

In this example, you define two properties. The first property uses the same name as the
corresponding property of the COM object; the second property uses a different name
from its corresponding COM object property.

Writing a Generic Driver

Using the Same Name for a Property

The position of the IE browser window is determined by the Top and Left properties
of its COM object. In the following steps, you make the Top property available to your
device object through your generic driver. For this property, the name of the property is
the same in both the COM object and in your device object.

Select the Properties node in the driver editor tree.

In the Add property field, enter the text Top, and click Add.

Expand the Properties node in the tree, and select the new node Top.

Click the Property Values tab. Your property can have a numeric value

corresponding to screen pixels. For this example, you can limit the value of the

property from O to 200.

5 Make sure the Data Type field indicates Double. In the Constraint field, click the
pull-down menu and select Bounded.

6 Keep the Minimum value of 0.0, and enter a Maximum value of 200.

BWN —

Your driver editor window should look like the following figure.

«): MATLAB Instrument Driver Editor

File Edit Help
O = =
MATLAE Instrument Driver |(Top View Help
M e _ciry
= Code Property Walues | Generall
Summary
o &llovved property value:
Initialization and Cleanuy
@ Groups Add REmove
Properties Incles Data Type Constraint
[—— 1 Doukle ~ | Bounded -
o Functionz
rConstraints for selected property value
bdiniraun: ID.D
hdadirmum: I2DD
Property value dependency
Mame: I Mone LI e I LI
K —
H:\Documerntstie_dry mddd g

16-5

16 Using Generic Instrument Drivers

16-6

Now that you have defined the data type and acceptable values of the property, you
can write the code to be executed whenever the device object property is accessed by
getor set.

Click the Code tab.

The concept of reading the property is rather straightforward. When you get the Top
property of the device object, the driver merely gets the value of the COM object's
corresponding Top property. So all you need in the Get code function is to identify
the COM object to get the information from.

Add the following code at the bottom of the function in the Get code pane:

ie = obj.Interface;
propertyValue = get(ie, propertyName);

The first line gets ie as a handle to the COM object. Remember that the Interface
property of the device object is set to this value back in the driver's Create code. The
second line retrieves the value of the COM object's Top property, and assigns it to
propertyValue, which is returned to the get function for the device object.

Add the following code at the bottom of the function in the Set code pane:

ie = get(obj, "Interface®);
ie.propertyName = propertyValue;

Using a Different Name for a Property

In the preceding steps, you created in your driver a device object property that has the
same name as the property of the COM object representing your instrument. You can
also create properties with names that do not match those of the COM object properties.
In the following steps, you create a property called Vsize that corresponds to the IE
COM object property Height.

(6] BWN —

© N O

Select the Properties node in the driver editor tree.

In the Add property field, enter the text Vsize, and click Add.

Expand the Properties node in the tree, and select the new node Vsize.

Click the Property Values tab. This property can have a numeric value
corresponding to screen pixels, whose range you define as 200 to 800.

Make sure the Data Type field indicates Double. In the Constraint field, click the
pull-down menu and select Bounded.

Enter a Minimum value of 200, and enter a Maximum value of 800.

Click the Code tab.

Add the following code at the bottom of the function in the Get code pane:

Writing a Generic Driver

ie = obj.Interface;
propertyValue = ie.Height;
Add the following code at the bottom of the function in the Set code pane:

ie = get(obj, "Interface®);
set(ie, "Height", propertyVvalue);

10 Save your driver.

Defining Functions

A common function for Internet Explorer is to download a Web page. In the following
steps, you create a function called goTo that allows you to navigate the Web with the

browser.

1 Select the Functions node in the driver editor tree.

2 Inthe Add function field, enter the text goTo, and click Add.

3 Expand the Functions node in the tree, and select the new node goTo.

Writing functions for generic drivers in the MATLAB Instrument Driver Editor is a
matter of writing straight code.

Your goTo function requires only one input argument: the URL of the Web page to
navigate to. You can call that argument site.
Change the first line of the MATLAB code pane to read

function goTo(obj, site)

The variable obj is the device object using this driver. The value of site is a
character vector passed into this function when you are using this driver. Your
function then must pass the value of site on to the IE COM object. So your function
must get a handle to the COM object, then call the IE COM method Navigate2,
passing to it the value of site.

Add the following code at the bottom of the function in the MATLAB code pane:

ie = obj.Interface;
invoke(ie, "Navigate2®, site);
Save your driver, and close the MATLAB Instrument Driver Editor.

Now that your generic driver is ready, you can use it with the Test & Measurement
Tool (tmtool) or at the MATLAB command line.

16-7

16 Using Generic Instrument Drivers

Using Generic Driver with Test & Measurement Tool

In this section...

“Creating and Connecting the Device Object” on page 16-8

“Accessing Properties” on page 16-9

“Using Functions” on page 16-10

Creating and Connecting the Device Object

With the Test & Measurement Tool you can scan for your driver, create a device object
that uses that driver, set and get properties of the object, and execute functions.

This example illustrates how to use the generic driver you created in “Writing a Generic
Driver” on page 16-3.

1 If your driver is not in the matlabroot\toolbox\instrument\instrument
\drivers directory, in the MATLAB Command Window, make sure that the
directory containing your driver is on the MATLAB path.

path

If you do not see the directory in the path listing, and the driver is not in the
matlabroot\toolbox\instrument\instrument\drivers directory, add the
directory to the path with the command

addpath directory

where directory is the pathname to the directory containing your driver.
2 Open the Test & Measurement Tool.

tmtool

In the Test & Measurement Tool tree, expand the Instrument Drivers node.
Select the MATLAB Instrument Drivers node.

Your driver might not be listed yet, so click Scan in the lower-right corner of the
tool. If the tool found your driver, it is listed in the tree as ie_drv.mdd.

Select the 1e_drv.mdd node in the tree.

Right-click the ie_drv.mdd node in the tree, and select Create Device Object
Using Driver. The following dialog box appears.

abhow

N o

16-8

Using Generic Driver with Test & Measurement Tool

10

Create Device Object x|
Configure Object Creation

Drriver: ie_drv

Resource: I

Driver location: h:\Documents

~Optiar

™ Dot show this dislog again.

cancel_|

Select the Select the created device object in the tree on dialog close check
box. The device object in this example does not need a resource, so keep that field
empty.

Click OK.

When the Test & Measurement Tool creates the device object, an entry for the object
appears as a node in the tree. The Browser-ie_drv node should already be selected
in the tree. This refers to the device object you just created.

Click Connect in the upper-right corner of the Test & Measurement Tool. This
establishes a communication channel between the tool and the IE browser window,
and an empty IE window appears on your screen. Remember that the Create code
for your driver creates an object for the IE browser, and the Connect code and
makes its window visible.

Accessing Properties

The driver you created allows you to specify where the browser window appears on your
screen and how large it is.

1

Click the Properties tab, and then select Top in the Device object properties list.

The first value displayed for setting this property is 0.0.

Click Set. The IE browser window shifts upward to the top edge of your screen.

With the mouse, grab the IE window, and drag it down some distance from the top of
the screen.

Now return to the Test & Measurement Tool window, and click Get for the Top
property. Notice in the Response pane how many pixels down you have moved the
window.

16-9

16 Using Generic Instrument Drivers

16-10

Use your driver Vsize property to change the size of the browser window.

BWN—

Select Vsize in the Device object properties list.

Enter a property value of 200, and click Set. Notice the IE window size.

Enter a property value of 400 and click Set. Notice the IE window size.

Try resizing the IE browser window directly with the mouse. Then in the Test &
Measurement Tool, click Get for the Vsize property. Notice the value returned to
the Response pane.

Using Functions

Use the goTo function of your generic driver to control the Web page that the browser

displays.

1 In the Test & Measurement Tool, click the Functions tab for your device object.

2 Select goTo in the list of Device object functions.

3 Inthe Input argument(s) field, enter "www.mathworks.com". Be sure to include
the single quotes.

4 Click Execute. Observe the IE browser and see that it displays the MathWorks Web
site.

5 Experiment freely. When you are finished, right-click the Browser-ie_drv node

in the tree and select Delete Object. Close the Test & Measurement Tool, and close
the IE browser window you created in this example.

Using a Generic Driver at Command Line

Using a Generic Driver at Command Line

In this section...

“Creating and Connecting the Device Object” on page 16-11
“Accessing Properties” on page 16-12

“Using Functions” on page 16-13

Creating and Connecting the Device Object

The Instrument Control Toolbox software provides MATLAB commands you can use in
the Command Window or in files to create a device object that uses a driver, set and get
properties of the object, and execute functions.

This example illustrates how to use the generic driver you created in “Writing a Generic
Driver” on page 16-3.

1 If your driver is not in the matlabroot\toolbox\instrument\instrument
\drivers directory, in the MATLAB Command Window, make sure that the
directory containing your driver is on the MATLAB software path.

path

If you do not see the directory in the path listing, and the driver is not in the
matlabroot\toolbox\instrument\instrument\drivers directory, add the
directory to the path with the command

addpath directory

where directory is the pathname to the directory containing your driver.

2 Create a device object using your driver. For the driver used in this example, the
icdevice function does not require an argument for a resource when using a
generic driver. What the object connects to and how it makes that connection are
defined in the Create code of your driver.

ie_obj = icdevice("ie_drv™);
3 Connect the object.

connect(ie_obj);

16-11

16 Using Generic Instrument Drivers

16-12

When the device object is connected, an empty IE window appears on your screen.
Now you can communicate directly with the IE browser from the MATLAB
Command window.

Accessing Properties

The driver you created allows you to specify where the browser window appears on your
screen and how large it is. You read and write the properties of your device object with
the get and set functions, respectively.

1 View all of the properties of your device object.

get(ie_obj)
ConfirmationFcn =
DriverName = ie_drv.mdd
DriverType = MATLAB generic
InstrumentModel =
Interface = [1x1 COM.internetexplorer_application]
LogicalName =
Name = Browser-ie_drv
ObjectVisibility = on
RsrcName =
Status = open
Tag =
Timeout = 10
Type = Browser
UserData = []

BROWSER specific properties:
Top = 47
Vsize = 593
2 Most of the properties listed belong to all device objects. For this example, the
properties of interest are those listed as BROWSER specific properties, that is,
Top and Vsize.

The Top property defines the IE browser window position in pixels from the top of
the screen. Vsize defines the vertical size of the window in pixels.
3 Shift the IE browser window to the top of the screen.

ie_obj.Top = O;
4 With the mouse, grab and drag the IE browser window down away from the top of
the screen.

Using a Generic Driver at Command Line

Find the window's new position by examining the Top property.
ie_obj.Top

ans =
120

Adjust the size of the window by setting the Vsize property.

ie_obj.Vsize = 200);
Make the window larger by increasing the property value.

ie_obj.Vsize = 600);

Using Functions

By using the goTo function of your generic driver, you can control the Web page
displayed in the IE browser window.

1

View all of the functions (methods) of your device object.
methods(ie_obj)

Methods for class icdevice:

Contents disp icdevice instrnotify methods size
class display igetfield instrument ne subsasgn
close end inspect invoke obj2mfile subsref
connect eq instrcallback isa open vertcat
ctranspose fieldnames instrfind isequal openvar

delete get instrfindall isetfield propinfo
devicereset geterror instrhelp isvalid selftest
disconnect horzcat instrhwinfo length set

Driver specific methods for class icdevice:

goTo

Most of the methods listed apply to all device objects. For this example, the method
of interest is the one listed under Driver specific methods, that is, goTo.
Use the goTo function to specify the page for the IE browser to display.

invoke(ie_obj, "goTo", "www.mathworks.com®);

If you have access to the Internet, the IE window should display the MathWorks
Web site.

16-13

16 Using Generic Instrument Drivers

3 When you are finished with your example, clean up the MATLAB workspace by
removing the object.

disconnect(ie_obj);
delete(ie_obj);
clear ie_obj;
4 Close the IE browser window you created in this example.

16-14

17

Saving and Loading the Session

This chapter describes how to save and load information associated with an instrument
control session.

+ “Saving and Loading Instrument Objects” on page 17-2

“Debugging: Recording Information to Disk” on page 17-6

17 Saving and Loading the Session

Saving and Loading Instrument Objects

17-2

In this section...

“Saving Instrument Objects to a File” on page 17-2
“Saving Objects to a MAT-File” on page 17-3

Saving Instrument Objects to a File

You can save an instrument object to a file using the obj2mFile function. obj2mfile
provides you with these options:

+ Save all property values or save only those property values that differ from their
default values.

Read-only property values are not saved. Therefore, read-only properties use their
default values when you load the instrument object into the MATLAB workspace.
To determine if a property is read-only, use the propinfo function or examine the
property reference pages.

+ Save property values using the set syntax or the dot notation.

If the UserData property is not empty, or if a callback property is set to a cell array of
values or a function handle, then the data stored in these properties is written to a MAT-
file when the instrument object is saved. The MAT-file has the same name as the file
containing the instrument object code.

For example, suppose you create the GPIB object g, return instrument identification
information to the variable out, and store out in the UserData property.

g = gpib(*ni",0,1);
g.Tag = "My GPIB object”;
fopen(g9)

cmd = "*IDN?";
fprintf(g,cmd)

out = fscanf(g);
g-UserData = out;

The following command saves g and the modified property values to the file mygpib.m.
Because the UserData property is not empty, its value is automatically written to the
MAT-file mygpib.mat.

Saving and Loading Instrument Objects

obj2mfile(g, "mygpib.m");
Use the type command to display mygpib.m at the command line.
Loading the Instrument Object

To load an instrument object that was saved as a file into the MATLAB workspace, type
the name of the file at the command line. For example, to load g from the file mygpib.m,

g = mygpib

The display summary for g is shown below. Note that the read-only properties such as
Status, BytesAvai lable, ValuesReceived, and ValuesSent are restored to their
default values.

GPIB Object Using NI Adaptor : GPIBO-1

Communication Address
BoardIndex:
PrimaryAddress:
SecondaryAddress:

oOr o

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

dle

OOQOm

When loading g into the workspace, the MAT-file mygpib.mat is automatically loaded
and the UserData property value is restored.

g.UserData

ans =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Saving Obijects to a MAT-File

You can save an instrument object to a MAT-file just as you would any workspace
variable — using the save command. For example, to save the GPIB object g and

17-3

17 Saving and Loading the Session

17-4

the variables cmd and out, defined in “Saving Instrument Objects to a File” on page
17-2, to the MAT-file mygpibl.mat,

save mygpibl g cmd out

Read-only property values are not saved. Therefore, read-only properties use their
default values when you load the instrument object into the MATLAB workspace. To
determine if a property is read-only, use the propinfo function or examine the property
reference pages.

Loading the Instrument Object

To load an instrument object that was saved to a MAT-file into the MATLAB
workspace, use the load command. For example, to load g, cmd, and out from MAT-file
mygpibl._mat,

load mygpibl

The display summary for g is shown below. Note that the read-only properties such as
Status, BytesAvailable, ValuesReceived, and ValuesSent are restored to their
default values.

GPIB Object Using NI Adaptor : GPIBO-1

Communication Address

BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

Saving and Loading Instrument Objects

Read/Write State
TransferStatus:
BytesAvailable:
ValuesReceived:
ValuesSent:

OO0OQOm

17-5

17 Saving and Loading the Session

Debugging: Recording Information to Disk

17-6

In this section...

“Using the record Function” on page 17-6
“Introduction to Recording Information” on page 17-7
“Creating Multiple Record Files” on page 17-7
“Specifying a File Name” on page 17-7

“Record File Format” on page 17-8

“Recording Information to Disk” on page 17-10

Using the record Function

Recording information to disk provides a permanent record of your instrument control
session, and is an easy way to debug your application. While the instrument object is
connected to the instrument, you can record this information to a disk file:

+ The number of values written to the instrument, the number of values read from the
instrument, and the data type of the values
+ Data written to the instrument, and data read from the instrument

+ Event information

You record information to a disk file with the record function. The properties associated
with recording information to disk are given below.

Recording Properties

Property Name Description

RecordDetail Specify the amount of information saved to a record file.

RecordMode Specify whether data and event information are saved to
one record file or to multiple record files.

RecordName Specify the name of the record file.

RecordStatus Indicate if data and event information are saved to a

record file.

Debugging: Recording Information to Disk

Introduction to Recording Information

This example creates the GPIB object g, records the number of values transferred
between g and the instrument, and stores the information to the file text myfile.txt.

g = gpib(*ni*,0,1);
g-RecordName = "myfile.txt";

fopen(g)
record(g)

fprintf(g, "*IDN?")
out = fscanf(g);

End the instrument control session.

fclose(Q)
delete(Q)
clear g

Use the type command to display myFfile.txt at the command line.

Creating Multiple Record Files

When you initiate recording with the record function, the RecordMode property
determines if a new record file is created or if new information is appended to an existing
record file.

You can configure RecordMode to overwrite, append, or index. If RecordMode
is overwrite, then the record file is overwritten each time recording is initiated. If
RecordMode is append, then the new information is appended to the file specified
by RecordName. If RecordMode is index, a different disk file is created each time
recording is initiated. The rules for specifying a record file name are discussed in
“Specifying a File Name” on page 17-7.

Specifying a File Name

You specify the name of the record file with the RecordName property. You can specify
any value for RecordName, including a directory path, provided the file name is
supported by your operating system. Additionally, if RecordMode is index, then the file
name follows these rules:

* Indexed file names are identified by a number. This number precedes the file name
extension and is increased by 1 for successive record files.

17-7

17 Saving and Loading the Session

17-8

+ If no number is specified as part of the initial file name, then the first record file does
not have a number associated with it. For example, if RecordName is myfi le . txt,
then myfile.txt is the name of the first record file, myfi le0l.txt is the name of
the second record file, and so on.

+ RecordName is updated after the record file is closed.

+ If the specified file name already exists, then the existing file is overwritten.

Record File Format

The record file is an ASCII file that contains a record of one or more instrument
control sessions. You specify the amount of information saved to a record file with the
RecordDetai l property.

RecordDetail can be compact or verbose. A compact record file contains the number
of values written to the instrument, the number of values read from the instrument,

the data type of the values, and event information. A verbose record file contains the
preceding information as well as the data transferred to and from the instrument.

Binary data with precision given by uchar, schar, (u)int8, (u)intl6, or (u)int32 is
recorded as hexadecimal values. For example, if the integer value 255 is read from the
instrument as a 16-bit integer, the hexadecimal value O0OFF is saved in the record file.
Single- and double-precision floating-point numbers are recorded as decimal values
using the %g format, and as hexadecimal values using the format specified by the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic.

The IEEE floating-point format includes three components — the sign bit, the exponent
field, and the significant field. Single-precision floating-point values consist of 32 bits,
and the value is given by

value = (-1)°'"(2***")(1.signiFficand)
Double-precision floating-point values consist of 64 bits, and the value is given by
value = (-1)%'9"(2** %) (1.significand)

The floating-point format component and the associated single-precision and double-
precision bits are given below.

Format Component Single-Precision Bits Double-Precision Bits

sign 1 1

Debugging: Recording Information to Disk

Format Component Single-Precision Bits Double-Precision Bits
exp 2-9 2-12
significand 10-32 13-64

For example, suppose you record the decimal value 4.25 using the single-precision
format. The record file stores 4.25 as the hex value 40880000, which is calculated from
the IEEE single-precision floating-point format. To reconstruct the original value,
convert the hex value to a decimal value using hex2dec:

dval hex2dec(*40880000")

dval

1.082654720000000e+009
Convert the decimal value to a binary value using dec2bin:

bval = dec2bin(dval,32)
bval =
01000000100010000000000000000000

The interpretation of bval is given by the preceding table. The left most bit indicates the
value is positive because (-1)° = 1. The next 8 bits correspond to the exponent, which is
given by

exp = bval(2:9)
exp =
10000001

The decimal value of exp is 2"+2° = 129. The remaining bits correspond to the significant,
which is given by
significand = bval(10:32)

significand
00010000000000000000000

The decimal value of significand is 2% = 0.0625. You reconstruct the original value by
plugging the decimal values of exp and significand into the formula for IEEE singles:

value = (-1)°2" ~ *")(1.0625)
value = 4.25

17-9

17 Saving and Loading the Session

17-10

Recording Information to Disk

This example extends “Reading and Writing Binary Data” on page 4-22 by recording the
associated information to a record file. Additionally, the structure of the resulting record
file is presented:

1

Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an instrument with
primary address 1.

g = gpib("ni~,0,1);

Configure properties — Configure the input buffer to accept a reasonably large
number of bytes, and configure the timeout value to two minutes to account for slow
data transfer.

g- InputBufferSize = 50000;
g-Timeout = 120;

Configure g to execute the callback function instrcal Iback every time 5000 bytes
are stored in the input buffer.

g-BytesAvailableFcnMode = "byte”;
g-BytesAvailableFcnCount = 5000;
g-BytesAvailableFcn = @instrcallback;

Configure g to record information to multiple disk files using the verbose format. The
first disk file is defined as WaveForml . txt.

g-RecordMode = "index";

g-RecordDetail = "verbose®;

g-RecordName = "WaveForml._txt";

Connect to the instrument — Connect g to the oscilloscope.

fopen(g)
Write and read data — Initiate recording.

record(Q)

Configure the scope to transfer the screen display as a bitmap.

fprintf(g, "HARDCOPY :PORT GPIB™)
fprintf(g, "HARDCOPY : FORMAT BMP™)
fprintf(g, "HARDCOPY START")

Debugging: Recording Information to Disk

Initiate the asynchronous read operation, and begin generating events.

readasync(Qg)

instrcal lback is called every time 5000 bytes are stored in the input buffer. The
resulting displays are shown below.

BytesAvailable event occurred at 09:04:33 for the object: GPIBO-1.
BytesAvailable event occurred at 09:04:42 for the object: GPIBO-1.
BytesAvailable event occurred at 09:04:51 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:00 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:10 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:19 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:28 for the object: GPIBO-1.

Wait until all the data is stored in the input buffer, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

out = fread(g,g.BytesAvailable, uint8");

Toggle the recording state from on to oFf. Because the RecordMode value is index,
the record file name is automatically updated.

record(Q)
g-RecordStatus
ans =
off
g-RecordName
ans =
WaveForm2._txt
5 Disconnect and clean up — When you no longer need g, you should disconnect it
from the instrument, and remove it from memory and from the MATLAB workspace.

fclose(Q)

delete(Q)
clear g

The Record File Contents

To display the contents of the WaveForm1.txt record file,

type WaveForml.txt

17-11

17 Saving and Loading the Session

The record file contents are shown below. Note that data returned by the fread function
is in hex format (most of the bitmap data is not shown).

Legend:
* - An event occurred.
> - A write operation occurred.
< - A read operation occurred.

1 Recording on 18-Jun-2000 at 09:03:53.529. Binary data in
little endian format.

2 > 18 ascili values.

HARDCOPY :PORT GPIB

19 ascii values.

HARDCOPY : FORMAT BMP

14 ascii values.

HARDCOPY START

w
\%

IS
\%

5 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:33.334
6 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:41.775
7 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:50.805
8 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:00.266
9 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:10.306
10 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:18.777
11 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:27.778
12 < 38462 uint8 values.

42 4d cf 03 00 00 00 00 00 OO 3e 00 OO 00 28 00
00 00 80 02 00 00 e0 01 00 OO 01 OO 01 OO OO OO
00 00 00 96 00 00 OO0 OO0 00 OO OO OO OO OO OO OO0

ff ff ff ff ff ff ff ff ff ff ff ff ff ff fFf ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff £ ff
ff ff ff ff ff ff ff ff ff ff ff ff fFf ff

13 Recording off.

17-12

Test & Measurement Tool

This chapter describes how to use the Test & Measurement Tool to access your hardware
interfaces and instrument drivers.

+ “Test & Measurement Tool Overview” on page 18-2

+ “Using the Test & Measurement Tool” on page 18-4

] 8 Test & Measurement Tool

Test & Measurement Tool Overview

In this section...

“Instrument Control Toolbox Software Support” on page 18-2

“Navigating the Tree” on page 18-2

Instrument Control Toolbox Software Support

The Test & Measurement Tool (tmtool) enables you to configure and control resources
(instruments, serial devices, drivers, interfaces, etc.) accessible through the toolbox
without having to write the MATLAB script.

You can use the Test & Measurement Tool to manage your session with the toolbox. This
tool enables you to do the following:

* Detect available hardware and drivers.

+ Connect to an instrument or device.

+ Configure instrument or device settings.

* Read and write data.

* Automatically generate the MATLAB script.

* Visualize acquired data.

+ Export acquired data to the MATLAB workspace.

Navigating the Tree
You start the Test & Measurement Tool by typing
tmtool

You navigate to the various hardware control panes using the tool's tree. Start by
selecting the toolbox you want to work with, which displays a set of instructions in the
right pane. These instructions explain the basic steps to establishing communication
with an instrument.

For example, the following figure shows the pane displayed when you select Instrument
Control Toolbox.

18-2

Test & Measurement Tool Overview

| Test & Measurement Tool =3l x|

File View Tools Desktop Window Help

@2

oo ot omrmeni1og
{25 Hardware
B8 nstrument Ohjects
@ Instrument Drivers Getting Started with the Test & Measurement Tool

The Test & Measurement Tool enables you to configure and control resources (instruments, drivers,
interfaces, etc.) accessible through the toolbox without having to write the MATLAB script.

Discovering and Communicating with Instruments. Using the Tool you can:

¥ Search for available hardware
2 P Create instrument objects

3. P Configure instrument settings
4

} Read data from an instrument

Generating MATLAB Code To Use with Devices. Once you have established communication with your
instrument, you can configure instrument settings and read/write data. ou save a leg of your session in a file
and use that in MATLAB.

Navigating the Tool

When you click a node in the tree-view, the help panel updates to show help for the selected panel.

+ To see various interface options, click the Hardware node. Use this node to establish communication with
an instrument quickly, using SCPI commands.

s To use more detailed knowledge of the specific device, create an instrument driver using the Instrument

Drivers node. Te understand how the instrument driver device cbjects interact, refer to Using Device

Objects in the Instrument Centrel Toolbox User Guide.

Once you have created an instrument object to use to communicate with your instrument, click the

Instrument Objects node. Configure properties for the instrument object and to perform read and write

operations.

.

To go back to a previous help page, right-click in the help panel and select Back.

To refresh the help content, click the selected panel once more.

18-3

] 8 Test & Measurement Tool

Using the Test & Measurement Tool

18-4

In this section...

“Overview of the Examples” on page 18-4
“Hardware” on page 18-4
“Instrument Objects” on page 18-11

“Instrument Drivers” on page 18-16

Overview of the Examples

These examples illustrates a typical session using the Test & Measurement Tool for
instrument control. The session entails communicating with a Tektronix TDS 210
oscilloscope via a GPIB interface.

To start the tool, on the MATLAB Command window, type:

tmtool

Hardware

When the tool displays, expand (click the +) the Instrument Control Toolbox node
in the tree. Next, expand the Hardware node. The tree now looks like this.

) Test & Measurement Tool

File View Tools Desktop Window Hel

LY)

Test & Measurement

) Instrument Control Toolbox|

[1-%® Instrument Objects
[]---ﬂ Instrument Drivers

Using the Test & Measurement Tool

Selecting the Interface and Scanning for GPIB Boards

Next, scan for installed GPIB boards by selecting the GP1B node. The right pane changes
to the Installed GPIB Board list. Click Scan to see what boards are installed. The
following figure shows the scan result from a system with one Capital Equipment Corp

and one Keithley® GPIB board.

| Test & Measurement Tool ol x|
File View Tools Desktop Window Help
@ | €
Test & Measurement GPIB Help x
L\, Instrument Control Tocolbax Selecting a GPIB Board
£ fz) Hardware Vendor £ Board Index

COMTEC {contec)]

National Instruments (ni) o Selecting the CBIB node enables you to

scan for installed GPIB boards.

#ll GPIE-VXI 1. Click Scan in the lower-right of the panel
Scanning returns each GPIB board
installed on the system. The GEIB node in

! %E Ter the tree adds a subnode for each board

& found by the scan.

-%g UDP 2 Expand the GETB node and select the
b8 Instrument Objects board you want to use.
[]-[4] Instrument Drivers 3. Scan for instruments connected to the
GPIB board.
Last scan date: 07-Dec-2009 13:12:54 Scan

Scanning for Instruments Connected to GPIB Boards

After determining what GPIB boards are installed, you must determine what
instruments are connected to those boards. Expand the GPIB node and select a board.

The right pane changes to the GPIB Instruments list. Click Scan to see what

instruments are connected to this board. The following figure shows the scan result from
a system with a Tektronix TDS 210 connected at primary address 8.

18-5

18 Test & Measurement Tool

) Test & Measurement Tool =10l x|
File View Tools Desktop Window Help

@2

Test & Measurement ni-Board-0 Help X

L\ Instrument Control Toolbox

Selecting a GPIB Instrument
E} =) Hardware Vendor: National Instruments (ni)

Board index: 0

F\;’ Serial
Primary Add... - |Semndary Addresslldentﬁaﬁun I Once you select the GIPB board you want to
}..contec-Board-0 5 0 KTRONIX, TDS 210,0,C... use, you can scan for instruments
oo | ITE | connected to this board and communicate
with them.

. 1. Click Scan to scan for instrument
)” GPIB-WI_ connected to the selected GPIB board.
i TCPTP (VXI-11) Scanning returns each GPIB instrument
""E’ UsB connected to the selected board. The tree
>§_’a TCPIP adds a subnode for each instrument
&% upp connected to this board.

[

. Expand the board node to display the
instruments connected to the board.
Select the instrument you want to use
from those displayed in the tree.

. Establish communication with the selected
GPIB instrument

[-"mm Instrument Chjects
[/ #] Instrument Drivers

w

-

Last scan date: 07-Dec-2009 13:20:32 Sean

Configuring the Interface

You can change the configuration of the interface by clicking the Configure tab. This
pane displays properties you can set to configure the instrument communication settings.
In the following view of the Configure pane, the Timeout property value has been set to
10 seconds.

18-6

Using the Test & Measurement Tool

Connection

Connection status to primary address 8 (ni board 0): Disconnected Connect Disconnect

Last identification request on 07-Dec-2009 13:20:32: TEKTRONIX,TDS 210,0,CF:91, 1CT FV:v2.03 TDS2MM:MMV:v 1,04

Communicate Configure | session Log |

ByteOrder litteEndian -
ECIMode on -
EOSCharCode eos | LF

EOSMode none -
InputBufferSize 512 &
QutputBufferSize 512 &
Timeout 10.0 &

Establishing the Connection
Expand the ni-Board-0 node and select the instrument at primary address 4: PAD-8

(TEKTRONIX,TDS 210...). The right pane changes to the control pane you use for
writing and reading data to and from that instrument.

18-7

18 Test & Measurement Tool

Click to connect to instrument

). Test & Measurement Tool -0l x|
Fle View Tools Desktop Window Help

@2
Test & Measurement [l »AD-8 (TEKTRONIX,TDS 210,0,CF91.1CT FVv2.03 TDSZHMMMV:v1.04) Help %
4_\ Instrument Control Toolbox Connecti ‘Communicating with GPIB Instruments

51 5] Hardware A
Connection status to primary address 8 (ni board 0): Disconnected Connect Disconnect

A serial
o EeE L request on 07-Dec-2009 13:20:32: TEKTRONIX,TDS 210,0,CF:91, 1CT FV:v2,03 TDS2MM:MMV:v 1.04 Selecting the GPIB instrument node enables you to
0 open communication with the instrument identified at
L contecfoardﬂ Communicate Configure | Session Log | that node.
| EFniBoard-D
i ByteOrder littleEndian 5 1. Click Connect to estabiish a connection with an
5 instrument
EOIMode Ly = 2. Select the Communicate tab to specify the data to
EOSCharCode e LF read and write.
osMode none = 3. Select the Configure tab if you need to change
instrument communication settings.
InputBufferSize 512 @ } Configure Tab Property Description
OutputBuffersize 512 2| 4. Selectthe Session Log tab and click Save
i1 %® Instrument Objects Timeout 10.0 @) Session to save your instrument control session

See for more information about saving your session.
This step saves your current session in a file, which
you can run from the MATLAB software to recreate
your session programmatically

Click Disconnect to close the connection to the
instrument,

#1-[4] Instrument Drivers

Click Connect to establish communication with the instrument. The tool creates an
interface object representing the communication channel to the instrument.

Writing and Reading Data
Selecting the Communicate tab displays the pane you use to write and read data. You
can write and read data separately using the Write and Read buttons, or you can use

the Query button to write and read in a single operation.

The following figure shows the pane after a brief session involving the following steps:

—

Open communication with the instrument.

2 Enter *IDN? as Data to Write, and click Query (write/read). This executes the
identify command.

3 Enter CURVE? as Data to Write, and click Query. This retrieves the waveform data

from the scope.

18-8

Using the Test & Measurement Tool

| PAD-8 (TEKTRONIX,TDS 210,0,CF-91.1CT FV:v2.03 TDS2MM:MMV:v1.04)

Connection

Connection status to primary address & (ni board 0): Connected
Last identification request on 07-Dec-2009 14:04:52: TEKTRONIX,TDS 210,0,CF:91, 1CT FV:v2.03 TDS2MM:MMV:v 1,04

Connect

| Disconnect |

Communicate I Conﬁgurel Session Logl

rSending data rReceiving data
Data type: | ASCII = || | pata type: | ASCII =l
Data format: I %es'n LI Data format: I o LI
Data to write: Size (optional): I
I curve? LI Response:
[Evaluate in workspace before write I#“ZEUU
Query | Write | Read | Export | Flush |
Action Data Size Format
Connecting to GPIBO-8
Write (Query) *IDM 1x4 %es'n
Read (Query) 1x0 o
Nrite (Query) curve? 16 %es'n
Read (Query) #42500 17 o

Exporting Instrument Data

You can export the data acquired from instruments to any of the following:

+ MATLAB workspace as a variable

* Figure window as a plot

+ MAT-file for storage in a file
*+ The MATLAB Variables editor for modification

To export data, select File > Export > Instrument Response(s) from the menu bar.
When the Data Exporter dialog box opens, choose the variables to export. The following
figure shows the Data Exporter set to export the curve data to the MATLAB workspace

as the variable dataZ2.

18-9

] 8 Test & Measurement Tool

18-10

) Data Exporter x|

Data destination:

Select the data to export:

Action Value Variable Name
W |Read (Query) datal
W |Read (Query) #42500 data2
Export Close Help

Note: If you repeatedly generate a large amount of data in the Test and Measurement
tool, you must delete the data object after you export it to MATLAB. This will allow the
tool to return resources to MATLAB correctly and will prevent MATLAB from failing to
respond the next time you acquire data.

Exporting the GPIB Object

When you open a connection to an instrument, the Test & Measurement Tool creates an
instrument object automatically. You can export the GPIB instrument object created in
this example as any of the following:

+ MATLAB workspace object that you can use as an argument in instrument control
commands

+ File containing the call to the GPIB constructor and the commands to set object
properties

+ MAT-file for storage in a file

To export the object, select File > Export > Instrument Object from the menu bar.
When the Object Exporter dialog box opens, choose the object to export. The following
figure shows the Object Exporter set to export the object to a file. (When you run that file,
it creates a new object with the equivalent settings.)

Using the Test & Measurement Tool

) Object Exporter

Object destination:

Select the objects to export:

[Tvee |
[lETE |GPIBO-8

Description I Variable Mame I
|obj1 |

Export | Close | Help

Saving Your Instrument Control Session

The Session Log tab displays the code equivalent of your instrument control
session. You can save this code to a file so that you can execute the same commands
programmatically.

Select File > Save Session Log from the menu bar or click Save Session. From this
dialog box you can specify a file name and directory location for the file.

Instrument Objects

Interface Objects

The Test & Measurement Tool creates interface objects automatically when you open
a communication channel to an instrument by clicking the Communication Status
button. To explicitly create and configure an interface object:

1 Expand the Instrument Objects node in the tree, and select Interface
Objects. The Interface Objects pane appears on the right.

2 Click New Object to open the New Object Creation dialog box.
«,): New Dbject Creation x|
Define ohject
Instrument ohject type: JElRE] n
Configure object crestion
“endor: I keithley LI
Eoard inde:x: l] LI
Pritnary address: |4 LI
OK I Cancel | Create |

18-11

] 8 Test & Measurement Tool

18-12

3

Specify the object parameters and click OK to create the new object.

Device Objects

To create and configure a device object:

1

2

3

4

Expand the Instrument Objects node in the tree, and select Device Objects.
The Device Objects pane appears on the right.

Click New Object to open the New Object Creation dialog box. In this case, the
Instrument object type is already set for device.

«): Mew Object Creation

Define ohject

Instrument ohject type: I device LI

~Configure object crestion

Drriver: Irumer‘d\drivers\teldronix_tds21 O.mcdd Browvse...

Interface: | criBn-4 x| creste..

cancel_|

Specify or browse for the instrument driver you want to use; then choose from among
the available interface objects, or create one if necessary.
Click OK to create the new device object.

Setting Instrument Object Properties

Whether the instrument objects are created automatically, created through the New
Object Creation dialog box, or created on the MATLAB Command window, the Test &
Measurement Tool enables you to set the properties of these objects. To change object
properties in the Test & Measurement Tool:

1

WN

Expand the Instrument Objects node in the tree, then either Interface
Objects or Device Objects, and select the object whose properties you want to
set.

Click the Configure tab in the right pane.

Set properties displayed in this pane, as shown in the following figures.

Using the Test & Measurement Tool

L=
|

GPIBO-8 Help x

4\ Instrument Control Toolbox

Hardware

E-%® Instrument Objects
=% Interface Objects

‘Object

"Cuﬂﬂiﬁ n ‘Communicating with an Interface

Connection status to primary address 8 (NI board 0): Disconnected Connect Discor

Communicate Canfigure | Session Log |

Communicate with your instrument
using an interface object. Save the
communication session to an M-fik

=% Device Objects BoardIndex 0 2]
lijl) scope-tektronix_tds210 ByteOrder
[#] Instrument Drivers

litteEndian =

Click Connect to establish a
connection with an instrument.

BytesAvailable

0
BytesAvallableFen 4§ [0x0 char array] R e e
specify the dala to read and write
BytesAvallableFenCount 8 & 3. Select the Configure tab if you
BytesavailableFcrMode sosCharCode B need to change instrument
communication or object property
BytesToOutput 0
ffi==sotuten settings. All the objects writable
Comparesits 8 # properties are available for you to
EOIMode on - =
= Properties — Alphabetical List n the
EOSCharCode =] 1P || nstrument Control Tooloox User's
EOSMode nane - Guide documentation for complete
descriptions of allthe object
ErrorFen | [0x0 char array] e
InputBufferSize 21000 B 4. Select the Session Log tab and
= s » click Save Session to save your
instrument control session.
ObjectVisibiity on d Ses for more information about
OutputBuffersize 21000 # saving your session
This step saves your current
OutputEmpLyF 0x0 ch
Sl a iy 4| 0 char array] session in a file, which you can run
PrimaryAddress 8 B from the MATLAB software to

recreate your session

BN

Configuring Interface Object Properties

18-13

18 Test & Measurement Tool

) Test & Measurement Tool =loix|

Fie View Tools Desktop Window Help
@ e
[Test & Measurement scope-tektroni_tds210 Help X

-] Hardware
©® Instrument Objects
=99 Interface Objects

Connection status to Tektronix TDS210 (Osciloscope): Disconnected Connect D

Interface: GPIBO-8

4\ Instrument Contral Toolbox ’,Cwm 5 Bl communicating with a Device Object

mmunicate with your instrument using a

vice object. Save the communication
zzion to an M-file.

Coi
de

Driver
Name: tektronix_tds210
Version: 1.0 1. Click Connect above the tabbed panels

T e DiverE to establish a connection with the
Functions |pmpemes| Session Log instrument. The Disconnect button is
enabled when communication is
~Select an instrument function ~Respon: cetablishes.

™

Select the Functions tab to exscute
device object functions.

e bject functions:

autoset

devicereset Provide input argument data and output
drivertest argument variables if necessary. Click
factaryreset Execute to perform the function
geterror 3. Select Ihe Properties fab to set or read
colftest object property values

Cailbration group abject functions: Select the property in the Select an
o =l instrument property list. Click Get to

read the property value. Enter a value
for a sttable property, and click Set to
Ofject: =1 write the value.

Select the Session Log tab to view
your session code. Click Save Session
to write your session to an W-file, which
you can run from the MATLAB software

-

Input argument(s)

Quiputargumer

showtelp... | Exeate | = to recreate your session
= progr
[Functon | Object | Input | Output
I -
1| | »

Configuring Device Object Properties

Communicating with Your Instrument

Using an Interface Object

When communicating with your instrument using an interface object, you send data to
instrument in the form of raw instrument commands. In the following figure, the Test
& Measurement Tool sends the *RST string to the TDS 210 oscilloscope via an interface
object. *RST is the oscilloscope's reset command.

18-14

Using the Test & Measurement Tool

) Test & Measurement Tool -0 x|
Fle View Tools Desktop Window Help

8o

Test & Measurement | \(;p]m-n Help x
<\ Instrument Control Toolbox Trzzrem ‘Communicating with an Interface Object
Hardware ’V

Connection status to primary address & (NI board 0): Connected Connect | Discomect ||

E-%® Instrument Objects

599 Interface Objects) Communicate with your instrument using an
- Commuricate | Configure | Session Log | interface object. Save the communication
5 [Sending data Recelving data session to an M-file.

=% Device Objects

...... 1 scope-tekironix_tds210 Datatype: | ASCIT ~|| |patatype: |asco - 1. Click Connect to establish a connection
i with an instrument
B-|#] Instrument Drivers Data format: | %s'n ~ || |Dataformat: | %c - &

. Select ihe Communicate tab to specify the
Data to write: Size (optiona): data o read and wrie.

. Select the Configure tab if you need to
[sT]| Response: change instrument communication or object
I Evaluate in workspace before write [property settings. Al the object's wrilable

properties are available for you to set
T Read | T Flush Properties — Alphabetical List in the
Instrument Control Toolbox User's Guide
Acton ‘_ =5 = — doc for complete descriptions of
: al the obiect properties

Sfri”h”:m"g Lo r::rw = o Select the Session Log tab and click Save
Session to save your instrument control

session

Ses for more information about saving your

session

This step saves your current session in a

file, which you can run from the WATLAB

software to racraate your session

programmaticall.

Click Disconnect to close the connection to

the nstrument

w

-~

Communicating via an Interface Object

Using a Device Object

When communicating with your instrument using a device object, instead of employing
instrument commands, you invoke device object methods (functions) or you set device
object properties as provided by the MATLAB instrument driver for that instrument.

In the following figure, the Test & Measurement Tool resets a TDS 210 oscilloscope by

issuing a call to the devicereset function of the instrument driver. Communicating
this way, you don't need to know what the actual oscilloscope reset command is.

18-15

18 Test & Measurement Tool

) Test & Measurement Tool =loix|

Fle View Tools Desktop Window Help

@ |

Test & Measurement | scope-tektronix_tds210 Help x

4. Instrument Control Toolbox T]
Harduare Connection status to Tekironix TDS210 (Osciloscope): Connected Corect Diconnect
E-%® Instrument Objects =
=% Interface Objects Interface: GPIBO-8 Communicate with your instrument using a
______ il cPmoa e device object. Save the communication
session to an H-fiie
(=% Device Objects Mame: tektronix_tds210
i - (Vermm 10 1. Click Connect above the tabbed panels to
[-[4) Instrument Drivers establish a connection with the instrument
Functions | Properties | Session Log The Disconnect button is enabled when
communication is established
(R SO R [Respon: 2. Select the Functions tab to execute device
[Device object functions: - object functions.
autoset Function completed successfully. Provide input argument data and output
argument variables if necessary. Click
drivertest Execute to perform the function
factaryreset 3. Select the Properties tab to set or read
geterror object property values.
aelfiest Select the property in the Select an
 cibration group abject functians: instrument property list. Click Get to read
o =l the property valus. Enter a value for a
devicereset(O87) SETIED\E property, and click Set to write the:
valus
Object: Device object = 4. Select the Session Log lab to view your
Input argument(s) session code. Click Save Session to writs
- your session to an M-file, which you can run
Qutputargument(s):| from the WATLAB softwars to recreate your
= session programmatically.
Show Help... | Execite | Export. |
| Function [obest | Input | Output
|devicereset |Device object | | -
1| B

Communicating via a Device Object

Instrument Drivers

The Test & Measurement Tool enables you to scan for installed drivers, and to use those
drivers when creating device objects.

MATLAB Instrument Drivers

MATLAB instrument drivers include

+ MATLAB interface drivers
+ MATLAB VXIplug&play drivers
« MATLAB IVI drivers

Select the MATLAB Instrument Drivers node in the tree. Then click Scan to get an
updated display of all the installed MATLAB instrument drivers found on the MATLAB
software path.

18-16

Using the Test & Measurement Tool

Test & Measurement Tool o [=] (3
File View Tools Desktop Window Help

=
|4k Instrument Control Toobox MATLAB instrument drivers must be on the MATLAB path to be located during n instrument driver scan.
?;, T;':C::t . Driver Name /- !Eﬂver Type Driver Path
L [ym— aglent_33120a.mdd_|MATLAB Instrument | WMathwarks\develibatiAtestmeasiperfectmati,..
= agilent_34401a.mdd MATLAB Instrument \\Mathworks \devel\bat\Atestmeas'perfect\mat. ..
€] MATLAB Instrument Drivers agient_e3648a.mdd __ |MATLAB Instrument |WMathwarks\develibatiAtestmeas|perfectimat
4] VXIplugaplay Drivers generic_agilent_33120... MATLAB Instrument \\Mathworksdevel \patAtestmeas'perfectimatl
[#m lgeneric_agilent_e3646... |MATLAB Instrument WMathworks\devel\bat\Atestmeas\perfect\mat An instrument driver contains information
ecroy_8600a.mdd MATLAB Instrument |\ Mathworks\devel\pat\Atestmeas\perfectynat... about an instrument and defines the
lecroy 344 _ex.mdd__ MATLAB Instrument_[WMathnorks devel bat Atestmeas\perfectimat] e (e
= — You can communicate with an instrument
tektronix_tds2024.mdd _|MATLAB Instrument \Wathworks\devel lbat\Atestmeas'perfectinat. . through a driver, without learning the
tektronix_tds210.mdd |MATLAB Instrument | WMathwarks\develibatiAtestmeasiperfectmati,.. complex programming commands for each
instrument.

For advanced use of specific instruments
use a driver from the Instrument Drivers
node,

To understand how the instrument driver
leiTeross o and device objects interact, refer to Using
Device Objects In the instrument Control |7

v

When the Test & Measurement Tool scans for drivers, it makes them available as nodes
under the driver type node. Expand the MATLAB software Instrument Drivers
node to reveal the installed drivers. Select one of them to see the driver's details.

) Test & Measurement Tool =3l x|
Fie View Tools Desktop Window Help
Lo
2|2
tektronix_tds210.mdd || nelp x
4\ Instrument Control Toolbox - Summary MATLAB Instrument Driver
(=) Hardware Driver path: \|Mathworks\devellbat) \perfec \toolboxinstrumentlinstrument\drivers
L1
" Instrument Objects Manufacturer: Tektronix Instrument type: Osdiloscope
£1-[4] Instrument Drivers [B e— o View information about a MATLAB instrument
5 4] MATLAB Instrument Drivers driver's properties and functions.
-agilent_33120a.mdd View availzble: | Proper ties =101 {/ 1. choose Bropereies or sunceions inthe
+-agilent_34401a.mdd Device object properties: View Available menu
- agilent_e 35483 mdd prep—— 2. Selecta specific object property or function
- in the list to view its information
-generic_agient_33120a.mdd Language
|--generic_agilent_e3548a.mdd Math
' Jecroy_800a.mdd ResponserieaderState =l
llecroy_t344_ex.mdd

|»

i-tektronix_tds2024.mdd INSTRUMENTMODEL string (read only)

#] VxIplug8play Drivers Indicate the instrument model the object is connected to.

[vt

For device objects with a DriverType of MATLAB interface ob
InstrumentModel returns the information returned by the ins
identification command, e.g. ¥IDN?, “ID?. The instrument id

command is defined by the instrument driver.

For device cbjects with a DriverType of MATLAB VKIplugsplay

InstrumentModel always returns empty.

For device objects with a DriverType of MATLAB IVI, Instrum
returns a string based on the InstrumentManufacturer and In

driver properties.

InstrumentModel will be empty until the cbject is connected

instrument with the CONNECT function and the property value

with the GET function. =
4 | _l_I

A

18-17

] 8 Test & Measurement Tool

18-18

You can choose to see the driver's properties or functions. When you select the particular
property or function, the tool displays that item's description.

VXlplug&play Drivers

For an example of scanning for installed VXIplug&play drivers with the Test &
Measurement Tool, see “VXI plug and play Drivers” on page 13-4.

IVI Drivers

For an example of scanning for installed IVI-C drivers with the Test & Measurement
Tool, see “Getting Started with IVI Drivers” on page 14-5. For using the Test &
Measurement Tool to examine or configure an IVI configuration store, see “Configuring
an IVI Configuration Store” on page 14-16.

Using the Instrument Driver Editor

This chapter describes how to use the Instrument Driver Editor to create, import, or

modify instrument drivers.

“MATLAB Instrument Driver Editor Overview” on page 19-2
“Creating MATLAB Instrument Drivers” on page 19-5
“Properties” on page 19-16

“Functions” on page 19-31

“Groups” on page 19-43

“Using Existing Drivers” on page 19-59

19 Using the Instrument Driver Editor

MATLAB Instrument Driver Editor Overview

19-2

In this section...

“What Is a MATLAB Instrument Driver?” on page 19-2

“How Does a MATLAB Instrument Driver Work?” on page 19-3
“Why Use a MATLAB Instrument Driver?” on page 19-3

What Is a MATLAB Instrument Driver?

The Instrument Control Toolbox software provides the means of communicating directly
with a hardware instrument through an interface object. If you are programming directly
through an interface object, you need to program with the command language of the
instrument itself. Any substitution of instrument, such as make or model, may require a
change to the appropriate the MATLAB code.

Command
Line Interface | | Hardware | | Hardware
or Object Interface Instrument
M-File

Instrument-Level
Commands

A MATLAB instrument driver offers a layer of interpretation between you and
the instrument. The instrument driver contains all the necessary commands for
programming the instrument, so that you do not need to be aware of the specific
instrument commands. Instead, you can program the instrument with familiar or
consistent device object properties and functions.

The following figure shows how a device object and instrument driver offer a layer
between the command line and the interface object. The instrument driver handles
the instrument-level commands, so that as you program from the command line, you
need only manipulate device object properties and functions, rather than instrument
commands.

MATLAB Instrument Driver Editor Overview

Command
Line L Device || Ixﬁ"’?ﬁlﬁt || Interface | | Hardware | | Hardware
or Object Dri Object Interface Instrument
. river
M-File \
Device Object Instrument-Level
Properties and Functions Commands

In addition to containing instrument commands, the instrument driver can also contain
the MATLAB code to provide analysis based upon instrument setup or data.

Note: For many instruments, a MATLAB instrument driver already exists and you

will not need to create a MATLAB instrument driver for your instrument. For other
instruments, there may be a similar MATLAB instrument driver and you will need to
edit it. If you would like more information on how to edit a MATLAB instrument driver,
you may want to begin with “Modifying MATLAB Instrument Drivers” on page 19-59.

Note: The Instrument Driver Editor is unable to open MDDs with non-ascii characters
either in their name or path on Mac platforms.

How Does a MATLAB Instrument Driver Work?

A MATLAB instrument driver contains information on the functionality supported by
an instrument. You access this functionality through a device object's properties and
functions.

When you query or configure a property of the device object using the get or set
function, or when you call (invoke) a function on the device object, the MATLAB
instrument driver provides a translation to determine what instrument commands are
written to the instrument or what the MATLAB code is executed.

Why Use a MATLAB Instrument Driver?

Using a MATLAB instrument driver isolates you from the instrument commands.
Therefore, you do not need to be aware of the instrument syntax, but can use the same
code for a variety of related instruments, ignoring the differences in syntax from one
instrument to the next.

19-3

19 Using the Instrument Driver Editor

For example, suppose you have two different oscilloscopes in your shop, each with its
own set of commands. If you want to perform the same tasks with the two different
instruments, you can create an instrument driver for each scope so that you can control
each with the same code. Then substitution of one instrument for another does not
require a change in the MATLAB code being used to control it, but only a substitution of
the instrument driver.

19-4

Creating MATLAB Instrument Drivers

Creating MATLAB Instrument Drivers

In this section...

“Driver Components” on page 19-5
“MATLAB Instrument Driver Editor Features” on page 19-6
“Saving MATLAB Instrument Drivers” on page 19-6

“Driver Summary and Common Commands” on page 19-6

“Initialization and Cleanup” on page 19-10

Driver Components

A MATLAB instrument driver contains information about an instrument and defines the
functionality supported by the instrument.

Driver Component Description
Driver Summary and Basic information about the instrument, e.g., manufacturer
Common Commands or model number.

Initialization and Cleanup |Code that is executed at various stages in the instrument
control session, e.g., code that is executed upon connecting

to the instrument.

Properties A property is generally used to configure or query an
instrument's state information.

Functions A function is generally used to control or configure an
instrument.

Groups A group combines common functionality of the instrument

into one component.

Depending on the instrument and the application for which the driver is being used,
all components of the driver may not be defined. You can define the necessary driver
components needed for your application with the MATLAB Instrument Driver Editor.

Note: The Instrument Driver Editor is unable to open MDDs with non-ascii characters
either in their name or path on Mac platforms.

19-5

19 Using the Instrument Driver Editor

19-6

MATLAB Instrument Driver Editor Features

The MATLAB Instrument Driver Editor is a tool that creates or edits a MATLAB
instrument driver. Specifically, it allows you to do the following:

+ Add/remove/modify properties.

* Add/remove/modify functions .

* Define the MATLAB code to wrap around commands sent to instrument.
You can open the MATLAB Instrument Driver Editor with the midedit command.

In the rest of this section, each driver component will be described and examples will be
shown on how to add the driver component information to a new MATLAB instrument
driver called tektronix_tds210_ex.mdd. The tektronix_tds210_ex.mdd driver
will define basic information and instrument functionality for a Tektronix TDS 210
oscilloscope.

Saving MATLAB Instrument Drivers

You can save an instrument driver to any directory with any name. It is recommended
that the instrument driver be saved to a directory in the MATLAB path and that the
name follows the format manufacturer_model .mdd. For example, an instrument
that is used with a Tektronix TDS 210 oscilloscope should be saved with the name
tektronix_tds210.mdd.

Driver Summary and Common Commands

You can assign basic information about the instrument to the MATLAB instrument
driver. Summary information can be used to identify the MATLAB instrument driver
and the instrument that it represents. Common commands can be used to reset, test,
and read error messages from the instrument. Together, this information can be used to
initialize and verify the instrument.

Topics in this section include

* “Driver Summary” on page 19-7
+ “Common Commands” on page 19-7
* “Defining Driver Summary and Common Commands” on page 19-7

+ “Verifying Driver Summary and Common Commands” on page 19-8

Creating MATLAB Instrument Drivers

Driver Summary

You can assign basic information that describes your instrument in the instrument
driver. This information includes the manufacturer of the instrument, the model number
of the instrument and the type of the instrument. A version can also be assigned to the
driver to assist in revision control.

Common Commands

You can define basic common commands supported by the instrument. The common
commands can be accessed through device object properties and functions.

Common Accessed with Device Example Instrument Description

Commands Object's Command

Identify InstrumentModel *1DN? Returns the identification

property string of the instrument

Reset devicereset function |*RST Returns the instrument to a
known state

Self test selftest function *TST? Tests the instrument's
interface

Error geterror function ErrLog:Next? Retrieves the next instrument
error message

The MATLAB Instrument Driver Editor assigns default values for the Common
commands. The common commands should be modified appropriately to match the
instrument's command set.

Defining Driver Summary and Common Commands

This example defines the basic driver information and Common commands for a
Tektronix TDS 210 oscilloscope using the MATLAB Instrument Driver Editor:

1 Select the Summary node in the tree.
2 In the Driver summary pane:

a Enter Tektronix in the Manufacturer field.

b Enter TDS 210 in the Model field.

¢ Select Oscilloscope in the Instrument type field.
d

Enter 1.0 in the Driver version field.
3 Inthe Common commands pane:

19-7

19 Using the Instrument Driver Editor

a Leave the Identify field with *IDN?.
b Leave the Reset field with *RST.
¢ Leave the Self test field with *TST?

d Update the Error field with ErrLog:Next?
4 Click the Save button. Specify the name of the instrument driver as
tektronix_tds210 ex.mdd.

#J MATLAB Instrument Driver Editor

File Edit Help

IS[=] E3

O == &

MATLAB Instrument Driver

Summary

Yiew Help

M) tektroniz_tds210_ex
; @ Sumnmary|
Initialization and Cleanup

-DisplayContrast
Functions

Driver summary

Manufackurer: ITektronix

Supported models: ITDS z10

Instrument bype: I Oscilloscope

Driver version: |1 .0

~Common command

Identify: [*IDN?

Reset: [*RST

Self test: [+T3T?

Errar: IErrLog:Next?

C:\Program Files\MATLABYR2007btoolboxinstrumentlinstrumentdriversitektronix_tds210_ex.mdd

Note For additional information on instrument driver nomenclature, refer to “Saving

MATLAB Instrument Drivers” on page 19-6.

Verifying Driver Summary and Common Commands

This procedure verifies the summary information defined in the Driver

Summary and Common commands panes. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB Command Window,

1 Create the device object, obj, using the 1icdevice function.

19-8

Creating MATLAB Instrument Drivers

g = gpib("mcc®, 0, 2);

obj = icdevice("tektronix_tds210 _ex.mdd", g);
View the defined driver information.

obj

Instrument Device Object Using Driver : tektronix_tds210_ex.mdd

Instrument Information

Type Oscilloscope
Manufacturer Tektronix
Model TDS 210

Driver Information

DriverType MATLAB Instrument Driver
DriverName tekronix_tds210_ex.mdd
DriverVersion 1.0

Communication State
Status closed

instrhwinfo(obj)
ans =
Manufacturer: "Tektronix-®
Model: *"TDS 210*
Type: "Oscilloscope”
DriverName: "h:\documents\tektronix_tds210_ex.mdd"
Connect to the instrument.

connect(obj)
Verify the Common commands.

obj . InstrumentModel
ans =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v2.03 TDS2MM:MMV:v1.04

devicereset(obj)
selftest(obj)
ans =

0

geterror(obj)
ans =

19-9

19 Using the Instrument Driver Editor

5 Disconnect from the instrument and delete the objects.

disconnect(obj)
delete(Jobj gl])

Initialization and Cleanup

This section describes how to define code that is executed at different stages in the
instrument control session, so that the instrument can be set to a desired state at
particular times. Specifically, you can define code that is executed after the device object
is created, after the device object is connected to the instrument, or before the device
object is disconnected from the instrument. Depending on the stage, the code can be
defined as a list of instrument commands that will be written to the instrument or as
MATLAB code.

Topics in this section include

* Definitions of the types of code that can be defined
+ Examples of code for each supported stage

+ Steps used to verify the code
Create Code

You define create code to ensure that the device object is configured to support the
necessary properties and functions:

+ Create code is evaluated immediately after the device object is created.
* Create code can only be defined as a MATLAB software code.

Defining Create Code

This example defines the create code that ensures that the device object can transfer
the maximum waveform size, 2500 data points, supported by the Tektronix TDS 210
oscilloscope. In the MATLAB instrument driver editor,

1 Select the Initialization and Cleanup node in the tree.
2 Click the Create tab and enter the MATLAB software code to execute on device
object creation.

% Get the interface object and disconnect from instrument.
g = obj.Interface;

19-10

Creating MATLAB Instrument Drivers

fclose(Q);

% Configure the interface object®"s buffers to handle up to

% 2500 points (two bytes per point requires 5000 bytes).
g- InputBufferSize = 5000;
g-OutputBufferSize = 5000;

3 Click the Save button.
-} MATLAB Instrument Driver Editor (=] 9]
File Edit Help
b= &
MATLAE Instrument Driver Initialization and Cleanup View Help
M) tektronix_tds210_ex Creste | Connedl Disconnedl
function init (obj)
% This function is called after the obhject is created.
% OBJ is the device object.
% End of function definition - DO NOT EDIT
% Get the interface object and disconnect from instrument.
g = get(okj, 'Interface']:
folose (g
% Configure the interface object's buffers to handle up to
% 2500 points.
set iy, 'InputBufferZize', 5000);
set (g, 'CutputBufferZize', 5000 ;
« | |
!
D wvarkimatlab Pnstlabweork\driver siektroniz_tds210_ex.mdd 4
Verifying Create Code

This procedure verifies the MATLAB software create code defined. In this example, the
driver name is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS
210 oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index O.

1

g = gpib("mecc™, 0, 2);
g- InputBufferSize
ans =

512

g-OutputBufferSize
ans =

512

From the MATLAB command line, create the interface object, g; and verify the
default input and output buffer size values.

19-11

19 Using the Instrument Driver Editor

19-12

2 Create the device object, obj, using the icdevice function.

obj = icdevice("tektronix_tds210 _ex.mdd", Q);
3 Verify the create code by querying the interface object's buffer sizes.

g- InputBufferSize
ans =
5000

g-OutputBufferSize
ans =
5000
4 Delete the objects.

delete([obj a])

Connect Code

In most cases you need to know the state or configuration of the instrument when you
connect the device object to it. You can define connect code to ensure that the instrument
1s properly configured to support the device object's properties and functions.

Connect code is evaluated immediately after the device object is connected to the
instrument with the connect function. The connect code can be defined as a series of
instrument commands that will be written to the instrument or as MATLAB software
code.

Defining Connect Code

This example defines the connect code that ensures the Tektronix TDS 210 oscilloscope
is configured to support the device object properties and functions. Specifically, the
instrument will be returned to a known set of instrument settings (instrument reset) and
the instrument will be configured to omit headers on query responses.

1 From the MATLAB instrument driver editor, select the Initialization and
Cleanup node in the tree.

2 Click the Connect tab and enter the instrument commands to execute when the
device object is connected to the instrument.

+ Select Instrument Commands from the Function style menu.

+ Enter the *RST command in the Command text field, and then click Add.

Enter the HEADER OFF command in the Command text field, and then click
Add.

Creating MATLAB Instrument Drivers

Click the Save button.

.| MATLAB Instrument Driver Editor =lalx|
File Edit Help
b= &
MATLAE Instrument Driver |Initialization and Cleanup ¥iew Help
tekkronix_tdsz10
@ S G ST LS Create Connect I Disconnectl
i Summary
B 1nitialization and Cleanup| Function style:l Instrument Commands VI
; @Groups ~Connect command
=] Properties o o
.. DisplayContrast £ 4 Add command: IHEADER OFF Aadd Remove |
Functions Command
*RIT
HEADER. OFF
C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd 4

Verifying Connect Code

This procedure verifies the instrument commands defined in the connect code. In
this example, the driver name is tektronix_tds210_ex.mdd. Communication with
the Tektronix TDS 210 oscilloscope at primary address 2 is done via a Measurement
Computing Corporation GPIB board at board index 0.

1

From the MATLAB command line, create the device object, obj, using the icdevice
function.

g = gpib("mcc*, 0, 2);

obj = icdevice("tektronix_tds210 _ex.mdd", g);
Connect to the instrument.

connect(obj)
Verify the connect code by querying the Header state of the instrument.

query(g, "Header?")
ans =

19-13

19 Using the Instrument Driver Editor

19-14

0
4 Disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj a])

Disconnect Code

By defining disconnect code, you can ensure that the instrument and the device object are
returned to a known state after communication with the instrument is completed.

Disconnect code is evaluated before the device object's being disconnected from

the instrument with the disconnect function. This allows the disconnect code to
communicate with the instrument. Disconnect code can be defined as a series of
instrument commands that will be written to the instrument or it can be defined as
MATLAB software code.

Defining Disconnect Code

This example defines the disconnect code that ensures that the Tektronix TDS 210
oscilloscope is returned to a known state after communicating with the instrument using
the device object.

1 From the MATLAB instrument driver editor, select the Initialization and
Cleanup node in the tree.

2 Click the Disconnect tab and enter the MATLAB software code to execute when the
device object is disconnected from the instrument.

+ Select M-Code from the Function style menu.
Define the MATLAB software code that will reset the instrument and configure

the interface object's buffers to their default values.

% Get the interface object.
g = obj.Interface;

% Reset the instrument to a known state.
fprintf(g, "*RST");
3 Click the Save button.

Creating MATLAB Instrument Drivers

<} MATLAB Instrument Driver Editor (=] 9]
File Edit Help
b= &
MATLAE Instrument Driver Initialization and Cleanup View Help
M) tektronix_tds210_ex Createl Cormect Disconnect |
@ Surmary .
- — Function style: I M-Code =~ l
ik Groups function cleanup(cki)
E Properties % This function is called before the ohject is disconnected.
b . % OBJ is the device object.
@ Functions . I
% End of function definition - DO NOT EDIT
% Get the interface object.
g = get(okj, 'Interface']:
% Reset the instrument to & Known state.
fprintf (g, '*RIT'):
D wvarkimatlab Pnstlabweork\driver siektroniz_tds210_ex.mdd 4

Verifying Disconnect Code

This procedure verifies the MATLAB software code defined in the disconnect code. In
this example, the driver name is tektronix_tds210_ex.mdd. Communication with
the Tektronix TDS 210 oscilloscope at primary address 2 is done via a Measurement
Computing Corporation GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the 1cdevice function.

g = gpib("mcc*, 0, 2);
obj = icdevice("tektronix_tds210 _ex.mdd", g);
2 Connect to the instrument.

connect(obj)

3 Alter some setting on the instrument so that a change can be observed when you
disconnect. For example, the oscilloscope's contrast can be changed by pressing its
front pane Display button, and then the Contrast Decrease button.

4 Disconnect from the instrument and observe that its display resets.

disconnect(obj)
5 Delete the objects.

delete([obj g])

19-15

19 Using the Instrument Driver Editor

Properties

19-16

In this section...

“Properties: Overview” on page 19-16
“Property Components” on page 19-16
“Examples of Properties” on page 19-18

Properties: Overview

You can make the programming of instruments through device objects easier and more
consistent by using properties. A property can be used to query or set an instrument
setting or attribute. For example, an oscilloscope's trigger level may be controlled with

a property called TriggerLevel, which you can read or control with the get or set
function. Even if two different scopes have different trigger syntax, you can use the same
property name, TriggerLevel, to control them, because each scope will have its own
instrument driver.

Another advantage of properties is that you can define them with certain acceptable
values (enumerated) or limits (bounded) that can be checked before the associated
commands are sent to the instrument.

Property Components
The behavior of the property is defined by the following components.
Set Code

The set code defines the code that is executed when the property is configured with
the set function. The set code can be defined as an instrument command that will be
written to the instrument or it can be defined as MATLAB software code.

If the set code is MATLAB code, it can include any number of commands or MATLAB
software code wrapped around instrument commands to provide additional processing or
analysis.

If the set code is defined as an instrument command, then the command written to
the instrument will be the instrument command concatenated with a space and the
value specified in the call to set. For example, the set code for the DisplayContrast

Properties

property is defined as the instrument command DISplay:CONTRast. When the set
function below is evaluated, the instrument command sent to the instrument will be
DISplay:CONTRast 54.

set(obj, "DisplayContrast®, 54);
Get Code

The get code defines the code that is executed when the property value is queried with
the get function. The get code can be defined as an instrument command that will be
written to the instrument or it can be defined as MATLAB software code.

Note The code used for your property's get code and set code cannot include calls to the
fclose or fopen functions on the interface object being used to access your instrument.

Accepted Property Values

You can define the values that the property can be set to so that only valid values are
written to the instrument and an error would be returned before an invalid value could
be written to the instrument.

* A property value can be defined as a double, a character vector, or a Boolean.

* A property value that is defined as a double can be restricted to accept only doubles
within a certain range or a list of enumerated doubles. For example, a property could
be defined to accept a double within the range of [0 10] or a property could be
defined to accept one of the values [1,7,8,10].

* A property value that is defined as a character vector can be restricted to accept a list
of enumerated character vectors. For example, a property could be defined to accept
the character vectors min and max.

Additionally, a property can be defined to accept multiple property value definitions. For
example, a property could be defined to accept a double ranging between [0 10] or the
character vectors min and max.

Property Value Dependencies

A property value can be dependent upon another property's value. For example, in

controlling a power supply, the property VoltageLevel can be configured to the
following values:

19-17

19 Using the Instrument Driver Editor

+ A double ranging between 0 and 10 when the value of property
VoltageOutputRange is high

* A double ranging between 0 and 5 when the value of property VoltageOutputRange
is Tow

When Vol tageLevel is configured, the value of VoltageOutputRange is queried. If
the value of VoltageOutputRange is high, then VoltagelLevel can be configured to
a double ranging between 0 and 10. If the value of VoltageOutputRange is low, then
VoltagelLevel can be configured to a double ranging between 0 and 5.

Default Value

The default value of the property is the value that the property is configured to when the
object is created.

Read-Only Value

The read-only value of the property defines when the property can be configured. Valid
options are described below.

Read-Only Value Description
Never The property can be configured at all times with the set function.
While Open The property can only be configured with the set function when

the device object is not connected to the instrument. A device
object is disconnected from the instrument with the disconnect

function.

Always The property cannot be configured with the set function.

Help Text

The help text provides information on the property. This information is returned with the
instrhelp function.

instrhelp(obj, "PropertyName®)

Examples of Properties

This section includes several examples of creating, setting, and reading properties, with
steps for verifying the behavior of these properties.

19-18

Properties

Creating a Double-Bounded Property

This example creates a property that will configure the Tektronix TDS 210 oscilloscope's
LCD display contrast. The oscilloscope display can be configured to a value in the range
[1 100]. In the MATLAB instrument driver editor,

1
2

Select the Properties node in the tree.
Enter the property name, DisplayContrast, in the Name text field and click the

Add button. The new property's name, DisplayContrast, appears in the Property
Name table.

Expand the Properties node in the tree to display all the defined properties.
Select the DisplayContrast node from the properties displayed in the tree.
Select the Code tab to define the set and get commands for the DisplayContrast

property.
Select Instrument Commands in the Property style field.
+ Enter DISplay:CONTRast? in the Get command text field.
Enter DISplay:CONTRast in the Set command text field.
Select the Property Values tab to define the allowed property values.
+ Select Double in the Data Type field.
Select Bounded in the Constraint field.
+ Enter 1.0 in the Minimum field.
* Enter 100.0 in the Maximum field.

19-19

19 Using the Instrument Driver Editor

| MATLAB Instrument Driver Editor 10l =|
File Edit Help
O = &
MATLAB Instrument Driver DisplayContrast Yiew Help
Q tektronix_tds210_ex pememy ([I Generall
— Allowed property valu
[[=}
Initialization and Cleanup
Add | Remove |
Index Data Type I Conskraink I
Daouble ;l Bounded ;l

~Constraints For selected property value

Iiniraum: |1 .0
Madinmurm: IIDD.D

~Property value dependency

Mame: INDHELI Yalue: I LI

C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd

7 Select the General tab to finish defining the property behavior.
* Enter 50 in the Default value text field.
+ Select never in the Read only field.
In the Help text field, enter Sets or queries the contrast of the LCD

display.
8 Click the Save button.

19-20

Properties

<) MATLAB Instrument Driver Editor = |EI|1|
File Edit Help

O = &
MATLAE Instrument Driver DisplayContrast View Help

@ tektronix_tods210_ex

Initialization and Cleanup

Groups
= E Properties

@ Functions

Codel Property Yalues General |

Default value: |SD

Read only: I never =~ l

Help text:

Sets or queries the contrast of the LCD display.

I

D wvarkimatlab Pnstlabweork\driver siektroniz_tds210_ex.mdd

Verifying the Behavior of the Property

This procedure verifies the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at

board index 0. From the MATLAB command line,

1

Create the device object, obj, using the icdevice function.

g = gpib("mcc”,

obj = icdevice("tektronix_tds210 _ex.mdd", g);
View DisplayContrast property and its current value.

0, 2);

obj .DisplayContrast

ans =
50

Calling set on the DisplayContrast property lists the values to which you can set

the property.

set(obj, "DisplayContrast®)

[1.0 to 100.0]

Try setting the property to values inside and outside of the specified range.

19-21

19 Using the Instrument Driver Editor

19-22

obj _DisplayContrast = 17
obj _DisplayContrast
ans =
17
obj _DisplayContrast = 120
??? Invalid value for DisplayContrast. Valid values: a value
between 1.0 and 100.0.
View the help you wrote.

instrhelp(obj, "DisplayContrast™)

DISPLAYCONTRAST [1.0 to 100.0]

Sets or queries the contrast of the LCD display.

List the DisplayContrast characteristics that you defined in the Property
Values and General tabs.

info
info

propinfo(obj, "DisplayContrast™)

Type: "double”
Constraint: “bounded”
ConstraintValue: [1 100]
Defaultvalue: 50
ReadOnly: "never-
InterfaceSpecific: 1
Connect to your instrument to verify the set and get code.

connect(obj)

When you issue the get function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the DISplay:CONTRast?
command to the instrument.

obj .DisplayContrast
ans =
17

When you issue the set function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the DISplay:CONTRast 34
command to the instrument.

obj .DisplayContrast = 34)
Finally, disconnect from the instrument and delete the objects.

disconnect(obj)

Properties

delete([obj a])

Creating an Enumerated Property

This example creates a property that will select and display the Tektronix TDS 210
oscilloscope's cursor. The oscilloscope allows two types of cursor. It supports a horizontal
cursor that measures the vertical units in volts, divisions, or decibels, and a vertical
cursor that measures the horizontal units in time or frequency. In the MATLAB
instrument driver editor,

1 Select the Properties node in the tree.

2 Enter the property name, CursorType, in the Name text field and click the Add
button. The new property's name CursorType appears in the Property Name
table.

3 Expand the Properties node to display all the defined properties.

4 Select the CursorType node from the properties displayed in the tree.

5 Select the Code tab to define the set and get commands for the CursorType
property.

+ Select Instrument Commands in the Property style field.
Enter CURSor : FUNCtion? in the Get Command text field.
+ Enter CURSor:FUNCtion in the Set Command text field.

6 Select the Property Values tab to define the allowed property values.

+ Select String in the Data Type field.
Select Enumeration in the Constraint field.

+ Enter none in the New property value text field and click the Add button.
Then enter OFF in the Instrument Value table field.

+ Similarly add the property value voltage, with instrument value HBArs.

Similarly add the property value time, with instrument value VBArs.

19-23

19 Using the Instrument Driver Editor

19-24

| MATLAB Instrument Driver Editor 10l =|
File Edit Help

b= &

MATLAB Instrument Driver CusorType Yiew Help

W) tektroniz_tds210_ex

Summary
Initialization and Cleanup

Code Property alues | General |
~llowed property value:

oot | _rerore |

Index Data Type I Conskraink I
Skring ;l Enurneration ;l

~Constraints For selected property value

tirne: Add Remove |

Property Value Instrument Yalue
none CFF
voltage HEArs

_Bnrs

~Property value dependency

Mame: INDHELI Yalue: I LI

C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd 4

Add property value:

7 Select the General tab to finish defining the property behavior.

+ Enter none in the Default value text field.

+ Select never in the Read only field.

+ In the Help text field, enter Specifies the type of cursor.
8 Click the Save button.

Verifying the Behavior of the Property

This procedure verifies the behavior of the property. In this example, the driver name is
tektronix_tds210 ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the 1cdevice function.

g = gpib("mcc", 0, 2);
obj = icdevice("tektronix_tds210 _ex.mdd", g);

Properties

View the CursorType property's current value. Calling get on the object lists all its
properties.

get(obj)
Calling get on the CursorType property lists its current value.

obj .CursorType
ans =
none
View acceptable values for the CursorType property. Calling set on the object lists
all its settable properties.

set(obj)

Calling set on the CursorType property lists the values to which you can set the
property.

set(obj, "CursorType®)
[{none} | voltage | time]
Try setting the property to valid and invalid values.

obj.CursorType = "voltage”;
obj .CursorType
ans =
voltage
obj.CursorType = "horizontal*
??? The "horizontal® enumerated value is invalid.
View the help you wrote.

instrhelp(obj, "CursorType*®)

CURSORTYPE [{none} | voltage | time]

Specifies the type of cursor.

List the CursorType characteristics that you defined in the Property Values and
General tabs.

info
info

= propinfo(obj, "CursorType*)
Type: "string”
Constraint: “enum”
ConstraintValue: {3x1 cell}
DefaultvValue: "none*
ReadOnly: “never-
InterfaceSpecific: 1

19-25

19 Using the Instrument Driver Editor

19-26

info.ContraintValue

ans =

“none*

"voltage*

“time*

Connect to your instrument to verify the set and get code.

connect(obj)

When you issue the set function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the CURSor : FUNCtion VBArs
command to the instrument.

obj.CursorType = "time"

When you issue the get function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually sends the CURSor : FUNCtion?
command to the instrument.

obj .CursorType

ans =

time

Finally disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj gl])

A MATLAB Code Style Property

This example creates a property that will return the difference between two cursors

of the Tektronix TDS 210 oscilloscope. The oscilloscope allows two types of cursor. It
supports a horizontal cursor that measures the vertical units in volts, divisions, or
decibels, and a vertical cursor that measures the horizontal units in time or frequency.
The previous example created a property, CursorType, that selects and displays the
oscilloscope's cursor. In the MATLAB instrument driver editor,

1
2

Select the Properties node in the tree.

Enter the property name, CursorDelta, in the New Property text field and click
Add. The new property's name, CursorDelta, appears in the Property Name
table.

Expand the Properties node to display all the defined properties.

Select the CursorDelta node from the properties displayed in the tree.

Properties

5 Select the Code tab to define the set and get commands for the CursorDelta
property.

Select M-Code in the Property style field.

Since the CursorDelta property is read-only, no MATLAB software code will be
added to the MATLAB Set Function text field.

The following MATLAB software code is added to the MATLAB Get Function
text field.

% Extract the interface object.
interface = obj.Interface;

% Determine the type of cursor being displayed.
type = obj.CursorType

% Based on the cursor type, query the instrument.
switch (type)
case "none”

propertyValue = 0;

case "voltage*
propertyValue = query(interface, "CURSor:HBArs:DELTa?");
propertyValue = str2double(propertyValue);

case "time”
propertyValue = query(interface, "CURSor:VBArs:DELTa?");
propertyValue = str2double(propertyValue);

end

19-27

19 Using the Instrument Driver Editor

19-28

<) MATLAB Instrument Driver Editor ;IQILI
File Edit Help

0= &
MATLAB Instrument Driver CursorDelta View Help

@ tektronix_tds210_ex

Initialization and Cleanup

Groups

= Propetties
ursorType
isplayContrast

@ Functions

Code | Property Va\uesl Ganera\l

Property style: I M-Code - I

rDefine MATLAE get codh

function propertyValue = getPropertyiob], propertyN=me)
% Return a property wvalue.

% walue. If the property is a group property, OBJ is the group object.
% the property is s base device property, OBJ i=s the device obhject.

I“s Extract the interface obhject.
interface = get (ohj, 'Interface'):

% Determine the type of cursor being displayed.
type = get(okj, 'CursorType')

% Based on the cursor type, guery the instrument.

switch (type)

case 'none'
propertyValue = 0O

case 'voltage'
propertyValue = gqueryiinterface, 'CURSor:HELrs:DELTa?'):
propertyValue = stridouble (propertyValue);

case 'time!
propertyValue
propercyValue

end

guery(interface, 'CURZor:VEBArs:DELT=?');
strZdouble (propertyValue) ;

% Thi=s function is called to return the device or group object property

It

rDefine MATLAE set coch

function set({oh]j, propertyllame, propertyValue)

% et a property value.

% Thi=s function is called to set the device or group ochject property
% walue. If the property is a group property, OBJ is the group object.
% the property is s base device property, OBJ i=s the device obhject.

Select the Property Values tab to define the allowed property values.

Select Double in the Data Type field.
Select None in the Constraint field.

Select the General tab to finish defining the property behavior.

Enter O in the Default value text field.
Select always in the Read only field.

It

In the Help text field, enter Returns the difference between the

cursors.

Click the Save button.

two

Properties

Verifying the Behavior of the Property

This procedure verifies the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the 1cdevice function.

g = gpib("mcc*, 0, 2);
obj = icdevice("tektronix_tds210 _ex.mdd", g);

2 View the CursorDelta property's current value. Calling get on the object lists all
its properties.

get(obj)
3 View the CursorDelta property’s current value.

obj .CursorDelta
ans =
0
4 Calling set on the object lists all its settable properties. Note that as a read-only
property, CursorDelta is not listed in the output.

set(obj)
5 Setting the property to a value results in an error message.

obj.CursorDelta = 4)
??? Changing the "CursorDelta” property of device objects is not
allowed.

6 View the help you wrote.

instrhelp(obj, "CursorDelta®)
CURSORDELTA (double) (read only)
Returns the difference between the two cursors.
7 List the CursorDelta characteristics that you defined in the Property Values and
General tabs.

info
info

= propinfo(obj, "CursorDelta”)
Type: “double”
Constraint: "none*
ConstraintValue: []
Defaultvalue: O
ReadOnly: “always*”

19-29

19 Using the Instrument Driver Editor

InterfaceSpecific: 1
8 Connect to your instrument to verify the get code.

connect(obj)

When you issue the get function in the MATLAB software, the
tektronix_tds210_ex.mdd driver actually executes the MATLAB software code
that was specified.

obj.CursorDelta
ans =
1.6000
9 Finally, disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj a])

19-30

Functions

Functions

In this section...

“Understanding Functions” on page 19-31
“Function Components” on page 19-31

“Examples of Functions” on page 19-32

Understanding Functions

Functions allow you to call the instrument to perform some task or tasks, which may
return results as text data or numeric data. The function may involve a single command
to the instrument, or a sequence of instrument commands. A function may include the
MATLAB software code to determine what commands are sent to the instrument or to
perform analysis on data returned from the instrument. For example, a function may
request that a meter run its self-calibration, returning the status as a result. Another
function may read a meter's scaling, request a measurement, adjust the measured data
according to the scale reading, and then return the result.

Function Components
The behavior of the function is defined by the components described below.

MATLAB Code

The MATLAB code defines the code that is executed when the function is evaluated with
the 1nvoke function. The code can be defined as an instrument command that will be
written to the instrument or it can be defined as the MATLAB software code.

If the code is defined as an instrument command, the instrument command can be
defined to take an input argument. All occurrences of <input argument name>in
the instrument command are substituted with the input value passed to the invoke
function. For example, if a function is defined with an input argument, start, and
the instrument command is defined as Data:Start <start>, and a start value of
10 is passed to the Invoke function, the command Data:Start 10 is written to the
instrument.

If the code is defined as an instrument command, the instrument command can also be
defined to return an output argument. The output argument can be returned as numeric
data or as text data.

19-31

19 Using the Instrument Driver Editor

19-32

If the code is defined as the MATLAB software code, you can determine which
commands are sent to the instrument, and the data results from the instrument can be
manipulated, adjusted, or analyzed as needed.

Note The code used for your function's MATLAB software code cannot include calls to the
fclose or fopen functions on the interface object being used to access your instrument.

Help Text

The help text provides information on the function.

Examples of Functions

This section includes several examples of functions, and steps to verify the behavior of
these functions.

Simple Function

This example creates a function that will cause the Tektronix TDS 210 oscilloscope to
adjust its vertical, horizontal and trigger controls to display a stable waveform. In the
MATLAB instrument driver editor,

1 Select the Functions node in the tree.

2 Enter the function name, autoset, in the Add function text field and click the Add
button. The new function's name, autoset, appears in the Function Name table.

3 Expand the Functions node to display all the defined functions.

4 Select the autoset node from the functions displayed in the tree.

5 Select the Code tab to define commands executed for this function.

+ Select Instrument Commands in the Function style field.

In the Function commands pane, enter AUTOSet EXECute in the Add
command field and click the Add button.

Functions

- | MATLAB Instrument Driver Editor (=]]
File Edit Help
O = &
MATLAB Instrument Driver autoset Yiew Help
@ tektronix_tds210_ex Code I Helpl
: Summary
Initialization and Cleanup Function style: I Instrument Commands VI
@ Groups T
: . ~Function definition
3 Properties
E| Functions Current definition: autoset()
- aukoset| Input argurents: I

~Function command

t 3 Add command: FUTOSet EXECute vl Add Remayve |

Index I Command I Output I Format I
1 |AUTOSet EXECUte | Mone = =
C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd 4

6 Select the Help tab to define the help text for this function.

+ In the Help text field, enter INVOKE(OBJ, "autoset”™) causes the
oscilloscope to adjust its vertical, horizontal, and trigger
controls to display a stable waveform.

7 Click the Save button.

Verifying the Behavior of the Function

This procedure verifies the behavior of the function. In this example, the driver name 1s
tektronix_tds210 ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the 1cdevice function.

g = gpib("mec*, 0, 2);
obj = icdevice("tektronix_tds210 _ex.mdd", g);
2 View the method you created.

methods(obj)

Methods for class icdevice:

19-33

19 Using the Instrument Driver Editor

19-34

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne

eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset
3 View the help you wrote.

instrhelp(obj, “autoset™)

INVOKE(OBJ, "autoset™) causes the oscilloscope to adjust its
vertical, horizontal, and trigger controls to display a stable
waveform.

4 Using the controls on the instrument, set the scope so that its display is unstable.
For example, set the trigger level outside the waveform range so that the waveform
scrolls across the display.

5 Connect to your instrument and execute the function. Observe how the display of the
waveform stabilizes.

connect(obj)
invoke(obj, "autoset")
6 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj gl)
Function with Instrument Commands that Use Input and Output Arguments

This example creates a function that configures which waveform will be transferred from
the Tektronix TDS 210 oscilloscope, and configures the waveform's starting and ending
data points. In the MATLAB instrument driver editor,

1 Select the Functions node in the tree.

Functions

Enter the function name, configureWaveform, in the Add function text field and
click the Add button. The new function's name, configureWaveform, appears in
the Function Name pane.

Expand the Functions node to display all the defined functions.

Select the configureWaveform node from the functions displayed in the tree.
Select the Code tab to define commands executed for this function.

Select Instrument Commands in the Function style field.

Enter the input arguments source, start, stop in the Input arguments
field.

Enter Data:Source <source> in the Add command field and click the Add
button. In the table, select an Output type of None and a Format type of N/A.

Similarly, add the command: Data:Source? with ASCI1 Output and text
Format.

Similarly, add the command: Data:Start <start> with NONE Output and N/A
Format.

Similarly, add the command: Data:Start? with ASCI 1 Output and numeric
Format.

Similarly, add the command: Data:Stop <stop> with NONE Output and N/A
Format.

Similarly, add the command: Data:Stop? with ASCI1 Output and numeric
Format.

19-35

19 Using the Instrument Driver Editor

19-36

7

- ! MATLAB Instrument Driver Editor (=]]
File Edit Help
O = &
MATLAB Instrument Driver configureWaveform Yiew Help
M) tekbroniz_tds210_ex Code I Helpl

Summary

Initialization and Cleanup
@ Groups

: Propetties

Function style: I Instrument Commands VI

~Function definition

Current definition: configure’aveform{source, start, stop)

Input arguments: |source, skart, stop

~Function command

ASCIT

numetic

r I Add command: Fata:stop? - l Add Remove |
Index Command Output Format
1 Data:Source <source s Mone - | i -
2 Data:Source? ASCIT - | kext -
i3 Data:Start <start= Mone - | i -
4 Data:Start? ASCIT - | numeric -
5 Data:Stop <stop= Mone - | i -

C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd

Select the Help tab to define the help text for this function.

In the Help text field, enter [SOURCE, START, STOP] = INVOKE(OBJ,

"configureWaveform®, SOURCE, START, STOP) configures the

Verifying the Behavior of the Function

waveform that will be transferred from the oscilloscope.
Click the Save button.

This procedure verifies the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope
at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1

g = gpib("mcc*, 0, 2);

= icdevice("tektronix_tds210_ex.mdd", g);

methods(obj)

View the method you created.

Create the device object, obj, using the icdevice function.

Functions

Methods for class icdevice:

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne

eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset configureWaveform
View the help you wrote.

instrhelp(obj, “configureWaveform®)
[SOURCE, START, STOP] = INVOKE(OBJ,

the oscilloscope.

"configureWaveform®, SOURCE,
START, STOP) configures the waveform that will be transferred from

Connect to your instrument and execute the function.

connect(obj)

[source, start, stop] = invoke(obj,
1, 500)

source =

CH1

start =
1

stop =
500
[source, start, stop] = invoke(obj,
0, 3500)
source =
CH2

start =

"configureWaveform®, "CH1°",

"configureWaveform®, "CH2",

19-37

19 Using the Instrument Driver Editor

19-38

1

stop =
2500
5 Disconnect from your instrument and delete the object.

disconnect(obj)
delete(Jobj gl])

MATLAB Code Style Function

This example creates a function that will transfer and scale the waveform from the
Tektronix TDS 210 oscilloscope. In the MATLAB instrument driver editor,

1 Select the Functions node in the tree.

2 Enter the function name, getWaveform, in the Add function text field and click
the Add button. The new function's name, getWaveform, appears in the Function
Name table.

3 Expand the Functions node to display all the defined functions.

4 Select the getWaveform node from the functions displayed in the tree.

5 Select the Code tab to define commands executed for this function.

+ Select M-Code in the Function style field.

+ Update the function line in the Define MATLAB function text field to include
an output argument.

function yout = getWaveform(obj)

+ Add the following MATLAB software code to the Define MATLAB function text
field. (The instrument may require a short pause before any statements that read
a waveform, to allow its completion of the data collection.)

% Get the interface object.
g = obj.Interface;

% Configure the format of the data transferred.
fprintf(g, "Data:Encdg SRIBinary");
fprintf(g, "Data:Width 17);

% Determine which waveform is being transferred.
source = query(g, "Data:Source?");

% Read the waveform.
fprintf(g, “Curve?");

Functions

ydata = binblockread(g, "int87);

% Read the trailing terminating character.

fscanf(Q);

% Scale the data.

fprintf(g, ["WFMPre:* source ":Yoff?"]);
yoffset = fscanf(g, "%g");

fprintf(g, ["WFMPre:" source ":YMult?"]);
ymult = fscanf(g, "%g");

yout = (ydata*ymult) + yoffset;

19-39

19 Using the Instrument Driver Editor

19-40

<} MATLAB Instrument Driver Editor ;Iglll

File Edit Help

b= &
MATLAE Instrument Driver getWaveform View Help
M) tektronix_tds210_ex Code | Help I

Initialization and Cleanup IFUTEm e I M-Cade jv

Groups Define MATLAE function

B i
Propemes function yout = getWaveformiobi)
=B Functions % If this is a group function, OBJ is the group obhject. If

autoset % this i=s a base dewvice function, OBJ is the dewvice ohject.
onfigureiiavefarm
‘ Get the interface object.

et form %
g = get(okj, 'Interface']:

% Configure the format of the data transferred.
fprintf (g, 'Data:Encdg ZRIEinary'):

fprintf (g, 'Data:Width 1');

% Determine which waveform is heing transferred.
source = gueryig, 'Data:Source?'):

% Read the waveform.

fprintf (g, 'Curve?']:

vdata = binblockread(g, 'ints']:
% Read the trailing terminating character.
facanf (g)

% Zcale the data.
fprintf (g, ['UFMPre:' source ':¥Toff?']):
woffser = fscanfig, '3g'):

fprintf (g, ['UFMPre:' source ':¥Multc?']):
wrwoult = fscanfig, '3g'):

yout = [(ydata*ymwult) + voffset;

D wvarkimatlab Pnstlabweork\driver siektroniz_tds210_ex.mdd 4

6 Click the Help tab to define the help text for this function.

* In the Help text field, enter DATA = INVOKE(OBJ, "getWaveform®)
transfers and scales the waveform from the oscilloscope.
7 Click the Save button.

Verifying the Behavior of the Function

This procedure verifies the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210 oscilloscope

Functions

at primary address 2 is done via a Measurement Computing Corporation GPIB board at
board index 0. From the MATLAB command line,

1

Create the device object, obj, using the icdevice function.
g = gpib("mcc*, 0, 2);

obj = icdevice("tektronix_tds210 ex.mdd", g);

View the method you created.

methods(obj)

Methods for class icdevice:

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne

eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset configureWaveform getWaveform
View the help you wrote.

instrhelp(obj, "getWaveform®)

DATA = INVOKE(OBJ, "getWaveform®) transfers and scales the
waveform from the oscilloscope.

Connect to your instrument and execute the function.

connect(obj)

Configure the waveform that is going to be transferred.
invoke(obj, “configureWaveform®, *"CH1", 1, 500);

Transfer the waveform.

data = invoke(obj, "getWaveform®);

1941

19 Using the Instrument Driver Editor

19-42

Analyze and view the waveform.

size(data)
ans =
500 1

plot(data)
Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj a])

Groups

Groups

In this section...

“Group Components” on page 19-43
“Examples of Groups” on page 19-44

Group Components

A group may be used to set or query the same property on several elements, or to query
several related properties, at the same time. For example, all input channels on an
oscilloscope can be scaled to the same value with a single command; or all current
measurement setups can be retrieved and viewed at the same time.

A group consists of one or more group objects. The objects in the group share a set of
properties and functions. Using these properties and functions you can control the
features of the instrument represented by the group. In order for the group objects to
control the instrument correctly, the group must define a selection command for the
group and an identification string for each object in the group.

Selection Command

The selection command is an instrument command that configures the instrument to use
the capability or physical component represented by the current group object. Note, the
instrument might not have a selection command.

Identification String

The identification string identifies an object in the group. The number of identification
strings listed by the group defines the number of objects in the group. The identification
string can be substituted into the instrument commands written to the instrument.

When a group object instrument command is written to the instrument, the following
steps occur:

1 The selection command for the group is determined by the driver.

2 The identification string for the group object is determined by the driver.

3 If the selection command contains the string <ID>, it is replaced with the
identification string.

19-43

19 Using the Instrument Driver Editor

4 The selection command is written to the instrument. If empty, nothing is written to
the instrument.

5 If the instrument command contains the string <ID>, it is replaced with the
identification string.

6 The instrument command is written to the instrument.

Examples of Groups

This section includes several examples of groups, with steps to verify the code.

Creating a One-Element Group

This example combines the trigger capabilities of the Tektronix TDS 210 oscilloscope

into a trigger group. The oscilloscope allows the trigger source and slope settings to be
configured. In the MATLAB instrument driver editor,

Select the Groups node in the tree.

Enter the group name, Trigger, in the Add Group text field and click Add.
Expand the Groups node to display all the defined groups.

Select the Trigger node in the tree.

Select the Definition tab.

AbhWN—

Since the oscilloscope has only one trigger, there is not a command that will select
the current trigger. The Selection command text field will remain empty.

- ! MATLAB Instrument Driver Editor (=]]
File Edit Help
O = &
MATLAB Instrument Driver Trigger Yiew Help
Q tektronix_tds210_ex Definition I Helpl
: Summary

Initialization and Cleanup Selection command: I
Groups

Identifiet

- .’;\l Trigger,

Properties Identifier: Add Remave |
Functions Index I Identifier Mame I
1 |Trigger1 |

C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd

6 Select the Help tab to finish defining the group behavior.

19-44

Groups

In the Help text field, enter Trigger is a trigger group. The trigger
group object contains properties that configure and query the
oscilloscope®™s triggering capabilities.

7 Click the Save button.

Verifying the Group Behavior

This procedure verifies the group information defined. In this example, the driver
name is tektronix_tds210 ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib(*mecc®, 0, 2);
obj = icdevice("tektronix_tds210 ex.mdd", g);

2 View the group you created. Note that the HWName property is the group object
identification string.

get(obj)

obj.Trigger

Hwlndex: HwName: Type: Name:

1 Triggerl scope-trigger Triggerl

3 View the help.

instrhelp(obj, "Trigger™)
TRIGGER (object) (read only)
Trigger is a trigger group. The trigger group object contains
properties that configure and query the oscilloscope®s triggering
capabilities.

4 Delete the objects.

delete(Jobj gl)
Defining the Group Object Properties for a One-Element Group
This example defines the properties for the Trigger group object created in the previous
example. The Tektronix TDS 210 oscilloscope can trigger from CH1 or CH2 when the

data has a rising or falling slope.

First, the properties Source and Slope are added to the trigger group object. In the
MATLAB instrument driver editor,

19-45

19 Using the Instrument Driver Editor

1 Expand the Trigger group node to display the group object's properties and
functions.

2 Select the Properties node to define the Trigger group object properties.

3 Enter the property name Source in the Add property text field and click the Add
button

4 Enter the property name Slope in the Add property text field and click the Add
button.

5 Expand the Properties node to display the group object's properties.

Next, define the behavior of the Source property:

—

Select the Source node in the tree.
2 Select the Code tab to define the set and get commands for the Source property.
* Select Instrument Commands in the Property style field.
+ Enter TRIGger :MAIn:EDGE:SOUrce? in the Get command text field.
Enter TR1Gger :MAINn:EDGE:SOUrce in the Set command text field.
3 Select the Property Values tab to define the allowed property values.
Select String in the Data Type field.
Select Enumeration in the Constraint field.

Enter CH1 in the Add property value text field and click the Add button. Then
enter CH1 in the Instrument Value table field.

+ Similarly, add the enumeration: CH2, CH2.
4 Select the General tab to finish defining the property behavior.
Enter CH1 in the Default value text field.
Select never in the Read only field.
In the Help text field, enter Specifies the source for the main edge
trigger.

Next, define the behavior of the Slope property:

1 Select the Slope node in the tree.
2 Select the Code tab to define the set and get commands for the Slope property.

Select Instrument Commands in the Property style field.
* Enter TR1Gger :MAIn:EDGE:SLOpe? in the Get command text field.

19-46

Groups

* Enter TR1Gger :MAINn:EDGE:SLOpe in the Set command text field.
3 Select the Property Values tab to define the allowed property values.

+ Select String in the Data Type field.

« Select Enumeration in the Constraint field.

Then enter FALL in the Instrument Value table field.

* Similarly add the enumeration: rising, R1Se.

| MATLAB Instrument Driver Editor 10l =|
File Edit Help
O = &
MATLAB Instrument Driver Slope Yiew Help
W) tekbroniz_tds210_ex pememy ([I Generall
~llowed property value:
oot | _rerore |
Index Data Type I Conskraink I
Skring ;l Enurneration ;l
[ﬂ Properties
Functions —Constraints for selected property value
Add property walue: [rising Add Remove |
I Property Value I Instrument Yalue
Falling FaLL
I5e
~Property value dependency
Mame: I Mone LI Yalue: I LI
C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd 4

4 Select the General tab to finish defining the property behavior.

* Enter falling in the Default value text field.

+ Select never in the Read only field.

the main edge trigger.
5 Click the Save button.

Enter falling in the Add property value text field and click the Add button.

In the Help text field, enter Specifies a rising or falling slope for

19-47

19 Using the Instrument Driver Editor

Verifying Properties of the Group Object in MATLAB

This procedure verifies the properties of the Trigger group object. In this example, the
driver name is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS
210 oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib("mcc*, 0, 2);
obj = icdevice("tektronix_tds210 _ex.mdd", g);
2 Extract the trigger group objects, t, from the device object.

t = obj.Trigger
Hwlndex: HwName : Type: Name:
1 Triggerl scope-trigger Triggerl
3 Access specific properties to list its current value.

t.Source
ans =
CH1

t.Slope
ans =
falling
4 Calling set on a specific property lists the values to which you can set the property.

set(t, "Source®)
[{CH1} | CH2]

set(t, "Slope”)
[{falling} | rising]
5 Try setting the property to valid and invalid values.

t.Source = CHZ2;
t.Slope ="rising”
t."Source

ans =
CH2

t.Slope

ans =
"rising”

19-48

Groups

t.Source = "CH3"
??? The "CH3" enumerated value is invalid.

t_.Slope = "steady”
??? The "steady” enumerated value is invalid.
View the help you wrote.

instrhelp(t, "Source®)
SOURCE [{CH1} | CH2]
Specifies the source for the main edge trigger.

instrhelp(t, "Slope®)

SLOPE [{falling} | rising]

Specifies a rising or falling slope for the main edge trigger.

List the group object characteristics that you defined in the Property Values and
General tabs.

propinfo(t, "Source")
ans =
Type: "“string”
Constraint: “enum®
ConstraintValue: {2x1 cell}
DefaultvValue: "CH1*"
ReadOnly: “never-
InterfaceSpecific: 1

propinfo(t, “Slope”)
ans =
Type: “string”
Constraint: “enum®
ConstraintValue: {2x1 cell}
DefaultvValue: "falling”
ReadOnly: “never-
InterfaceSpecific: 1
Connect to your instrument to verify the set and get code.

connect(obj)

Note When you issue the get function on the Source property for the
trigger object, the textronix_tds210 ex.mdd driver actually sends the
TRIGger:MAIN:EDGE:SOUrce? command to the instrument.

19-49

19 Using the Instrument Driver Editor

19-50

t.Source
ans =
CH1

Note When you issue the set function on the Slope property for the
trigger object, the textronix_tds210_ ex.mdd driver actually sends the
TRIGger:MAIN:EDGE:SLOpe RISe command to the instrument.

t.Slope = "rising”
Disconnect from your instrument and delete the objects.

disconnect(obj)
delete(Jobj g])

Creating a Four-Element Group

This example combines the measurement capabilities of the Tektronix TDS 210
oscilloscope into a measurement group. The oscilloscope allows four measurements to be
taken at a time. In the MATLAB instrument driver editor,

b wWwN —

Select the Groups node in the tree.

Enter the group name, Measurement, in the Add group text field and click Add.
Expand the Groups node to display all the defined groups.

Select the Measurement node in the tree.

Select the Definition tab.

* The oscilloscope does not define an instrument command that will define the
measurement that is currently being calculated. The Selection command text
field will remain empty.

* In the Identifier Name listing, change Measurementl to Measl to define the
identification string for the first measurement group object in the group.

Enter the identifiers Meas2, Meas3, and Meas4 for the remaining measurement

group objects by typing each in the Identifier text field and clicking Add after
each.

Groups

7

-} MATLAB Instrument Driver I] 1
File Edit Help

O = &
MATLAB Instrument Driver Measuremenl! Yiew Help
M) tekbroniz_tds210_ex
Summary
Initialization and Cleanup Selection command: I
@ Groups Identifier

g .’;\l Measurement]
Identifier: [Meas4 Add Remayve |

@ Trigger

Properties Index Identifier Mame

Functions

Definition I Help |

Meas1
Measz
Meass
Meas+

R IE

C:\Program Files\MATLABYR2007boolboxinstrumenttinstrumentdriversitektronix_tds210_ex.mdd 4

Select the Help tab to finish defining the group behavior.

+ In the Help text field, enter Measurement is an array of measurement
group objects. A measurement group object contains properties
related to each supported measurement on the oscilloscope.

Click the Save button.

Verifying the Group Behavior

This procedure verifies the group information defined. In this example, the driver
name is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Measurement Computing Corporation
GPIB board at board index 0. From the MATLAB command line,

1

Create the device object, obj, using the 1cdevice function.

g = gpib("mcc*, 0, 2);
obj = icdevice("tektronix_tds210 _ex.mdd", g);
View the group you created. Note that the HWName property is the group object

get(obj).

obj _-Measurement

Hwindex: HwName: Type: Name:

1 Measl scope-measurement Measurementl
2 Meas2 scope-measurement Measurement2
3 Meas3 scope-measurement Measurement3
4 Meas4 scope-measurement Measurement4

19-51

19 Using the Instrument Driver Editor

19-52

3 View the help.

instrhelp(obj, "Measurement®)
MEASUREMENT (object) (read only)
Measurement is an array of measurement group objects. A
measurement group object contains properties related to each
supported measurement on the oscilloscope.

4 Delete the objects.

delete([obj a])
Defining the Group Obiject Properties for a Four-Element Group

This example defines the properties for the Measurement group object created in the
previous example. The Tektronix TDS 210 oscilloscope can calculate the frequency,
mean, period, peak to peak value, root mean square, rise time, fall time, positive pulse
width, or negative pulse width of the waveform of Channel 1 or Channel 2.

First, the properties MeasurementType, Source, Value, and Units will be added to the
Measurement group object.

1 Expand the Measurement group node to display the group object's properties and
methods.

2 Select the Properties node to define the Measurement group object properties.

3 Enter the property name MeasurementType in the Add property text field and
click the Add button.

4 Enter the property name Source in the Add property text field and click the Add

button.

5 Enter the property name Value in the Add property text field and click the Add
button.

6 Enter the property name Units in the Add property text field and click the Add
button.

7 Expand the Properties node to display the group object's properties.

Groups

Next, define the behavior of the MeasurementType property:

—r

<)} MATLAB Instrument Driver Editor

File Edit Help

=10l x|

O = &

MATLAE Instrument Driver

Properties

View Help

& tektronix_tods210_ex

Summary
Initialization and Cleanup

[—]—@ Groups

ource
nits

Walle
@ Functions
Triger

+ E Properties
@ Functions

Add property: |Units

Add

Remave |

Incles Property Mame

MessurementType

Source

Units

B[R =

Walue

D wvarkimatlab Pnstlabweork\driver siektroniz_tds210_ex.mdd

Select the MeasurementType node in the tree.
Select the Code tab to define the set and get commands for the MeasurementType

property.

Select Instrument Commands in the Property style field.

* Enter Measurement:<ID>:Type? in the Get command text field.

+ Enter Measurement:<ID>:Type in the Set command text field.
Select the Property Values tab to define the allowed property values.

+ Select String in the Data Type field.
+ Select Enumeration in the Constraint field.

+ Enter frequency in the Add property value text field and click the Add
button. Then enter FREQuency in the Instrument Value table field.

* Add the enumeration: mean, MEAN.

+ Add the enumeration: period, PERIod.
* Add the enumeration: pk2pk, PK2pk.
+ Add the enumeration: rms, CRMs.

+ Add the enumeration: riseTime, R1Se.

19-53

19 Using the Instrument Driver Editor

* Add the enumeration: fallTime, FALL.

* Add the enumeration: posWidth, PWldth.
* Add the enumeration: negWidth, NWildth.
+ Add the enumeration: none, NONE.

J. MATLAB Instrument Driver Editor o =] £
File Edit Help
0= =
MATLAB Instrument Driver Measurement Type Yiew Help
tekironiz_bds210_ex
S - - Code Property Yalues | General|
Surnrnary

Allowed property value:

Initialization and Cleanup

[_]...@ Groups Add Remoye |

E@ Measurement Index Data Type | Constraint |

E|"- Propertie: String ;| Enumeration ;|

Constraints for selected property value

Add property walue: Inona Add Remove |

Property Walue Inskrument Yalue
frequency FREQuency
mean MEAN
period PERIod
pkzpk FK2pk
s CRMs
riseTime RISe
FallTime FALL
postiidth PWIdth
negiwidth MWwIdth

o

~Property value dependency

Name: INonad Halie; I d

Ci\Program FilesiMATLABRZ007bitoolboxlinstrumenthinstrumentidriversitekkronix_tds210_ex. mdd

Y
4 Select the General tab to finish defining the property behavior.

+ Enter none in the Default value text field.
+ Select never in the Read only field.
+ In the Help text field, enter Specifies the measurement type.

Next, define the behavior of the Source property.

1 Select the Source node in the tree.
2 Select the Code tab to define the set and get commands for the Source property.

19-54

Groups

+ Select Instrument Commands in the Property style field.
+ Enter Measurement:<ID>:Source? in the Get command field.
* Enter Measurement:<ID>:Source in the Set command field.
3 Select the Property Values tab to define the allowed property values.
Select String in the Data Type field.
Select Enumeration in the Constraint field.

+ Enter CH1 in the Add property value text field and click the Add button. Then
enter CH1 in the Instrument Value table field.

Similarly add the enumeration: CH2, CH2.
4 Select the General tab to finish defining the property behavior.

Enter CH1 in the Default value text field.
+ Select never in the Read only field.

* In the Help text field, enter Specifies the source of the measurement.

Next, define the behavior of the Units property.

—r

Select the Units node in the tree.

2 Select the Code tab to define the set and get commands for the Units property.
+ Select Instrument Commands in the Property style field.

+ Enter Measurement:<ID>:Units? in the Get command text field.

Since the Units property is read-only, leave the Set command text field empty.
3 Select the Property Values tab to define the allowed property values.

Select String in the Data Type field.

Select None in the Constraint field.
4 Select the General tab to finish defining the property behavior.

+ Enter volts in the Default value text field.
+ Select always in the Read only field.
+ In the Help text field, enter Returns the measurement units.

Finally, define the behavior of the Value property.

1 Select the Value node in the tree.

19-55

19 Using the Instrument Driver Editor

19-56

Select the Code tab to define the set and get commands for the Value property.

* Select Instrument Commands in the Property style field.
Enter Measurement:<ID>:Value? in the Get command text field.
* Since the Value property is read-only, leave the Set command text field empty.
Select the Property Values tab to define the allowed property values.
Select Double in the Data Type field.
+ Select None in the Constraint field.
Select the General tab to finish defining property behavior.
* Enter O in Default value field.
Select always in the Read only field.

+ In the Help text field, enter Returns the measurement value.

5 Click the Save button.

Verifying the Properties of the Group Object in the MATLAB software

This procedure verifies the properties of the measurement group object. In this example,
the driver name is tektronix_tds210_ex.mdd. Communication with the Tektronix
TDS 210 oscilloscope at primary address 2 is done via a Measurement Computing
Corporation GPIB board at board index 0. From the MATLAB command line,

1

Create the device object, obj, using the icdevice function.

g = gpib(*mecc®, 0, 2);

obj = icdevice("tektronix_tds210 _ex.mdd", g);

Extract the measurement group objects, m, from the device object.

m = obj.Measurement

Hwlndex: HwName : Type: Name:

1 Measl scope-measurement Measurementl
2 Meas2 scope-measurement Measurement2
3 Meas3 scope-measurement Measurement3
4 Meas4 scope-measurement Measurement4

View the current values for the properties of the first group object. Calling get on
the object lists all its properties.

m(1)

Calling get on a specific property lists its current value.

Groups

m(1) -MeasurementType

ans =
none

m(1) -Source

ans =
CH1

m(1) -Units

ans =
volts

m(1) -Value

ans =
"none® "CH1" “"volts® [0]

View the acceptable values for the properties of the group object. Calling set on the
object lists all its settable properties.

set(m(1))

set(m(1), "MeasurementType®)
[frequency | period | {none} | mean | pk2pk | rms | riseTime |
fallTime | posWidth | negWidth]

set(m(1), "Source®)
[{CH1} | CH2]
Try setting the property to valid and invalid values.

m(1).Source = "CH2*"

m(1) .Source

ans =

CH2

m(1) .Source = "CH5"

??? The "CH5" enumerated value is invalid.
View the help you wrote.

instrhelp(m(1), "Value®)

VALUE (double) (read only)
Returns the measurement value.

19-57

19 Using the Instrument Driver Editor

19-58

10

List the group object characteristics that you defined in the Property Values and
General tabs.

propinfo(m(1), "Units"®)
ans =
Type: "string”
Constraint: "none”
ConstraintValue: []
Defaultvalue: "volts”
ReadOnly: "always”
InterfaceSpecific: 1

Connect to your instrument to verify the set and get code.

connect(obj)

Note When you issue the get function on the MeasurementType property for the
first measurement object in the group, the textronix_tds210 ex.mdd driver
actually sends the Measurement:Measl1:Type? command to the instrument.

m(1) -MeasurementType
ans =
frequency

Note When you issue the set function on the Source property for the second
measurement object in the group, the textronix_tds210_ex.mdd driver actually
sends the Measurement:Meas2:Source CH2 command to the instrument.

m(2) .Source = "CH2";
Disconnect from your instrument and delete the objects.

disconnect(obj)
delete(fobj gl)

Using Existing Drivers

Using Existing Drivers

In this section...
“Modifying MATLAB Instrument Drivers” on page 19-59
“Importing VXIplug&play and IVI Drivers” on page 19-60

Modifying MATLAB Instrument Drivers

If a MATLAB instrument driver does not exist for your instrument, it may be that

a MATLAB instrument driver for an instrument similar to yours does exist. Rather
than creating a new MATLAB instrument driver, you may choose to edit an existing
MATLAB instrument driver. An existing MATLAB instrument driver can be opened in
the MATLAB instrument driver editor with the midedit function.

midedit("drivername®)

Deleting an Existing Property, Function, or Group

1 Select the property, function, or group in the tree.
2 Select the Edit menu.
3 Select the Delete menu item.

Renaming an Existing Property, Function, or Group

1 Select the property, function, or group in the tree.
2 Select the Edit menu.
3 Select the Rename menu item.

Other Settings and Tasks

Refer to “Creating MATLAB Instrument Drivers” on page 19-5 for information on

* Defining summary information

* Defining initialization and cleanup code
* Creating a new property

+ Creating a new function

* Creating a new group

19-59

19 Using the Instrument Driver Editor

Importing VXlplug&play and IVI Drivers

The MATLAB Instrument Driver Editor can import a VXIplug&play or IVI driver. You
can evaluate or set the driver's functions and properties, and the modified driver can be
saved for further use:

1 Open the MATLAB Instrument Driver Editor with midedit.
2 Click the File menu, and select Import.

The Import Driver dialog box appears, showing the installed VXIplug&play and
IVI drivers.

Import Driver ﬂ
ype ot criver: | -

TekScope
TekScope. TekScope I%1-CObd Diriver

Impart | Cancel |

3 Select the desired driver and click Import.

The MATLAB Instrument Driver Editor creates a MATLAB instrument driver based on
the properties and/or functions in the original VXIplug&play or IVI driver. The editor
displays the new driver's summary information, groups, properties, and functions.

With the MATLAB Instrument Driver Editor, you can

* Create, delete, modify, or rename properties, functions, or groups
* Add code around instrument commands for analysis
+ Add create, connect, and disconnect code

* Save the driver as a separate MATLAB VXIplug&play instrument driver or MATLAB
IVI instrument driver

19-60

Using the Instrument Driver Testing

Tool

This chapter describes how to use the Instrument Driver Testing Tool to verify the

functionality of your instrument drivers.

“Instrument Driver Testing Tool Overview” on page 20-2
“Setting Up Your Test” on page 20-5

“Defining Test Steps” on page 20-11

“Saving Your Test” on page 20-23

“Testing and Results” on page 20-25

20 Using the Instrument Driver Testing Tool

Instrument Driver Testing Tool Overview

20-2

In this section...

“Functionality” on page 20-2
“Drivers” on page 20-2

“Test Structure” on page 20-3
“Starting” on page 20-3

“Example” on page 20-4

Functionality

This section provides an overview of the MATLAB Instrument Driver Testing Tool and
examples showing its capabilities and usage.

The MATLAB Instrument Driver Testing Tool provides a graphical environment for
creating a test to verify the functionality of a MATLAB instrument driver.

The MATLAB Instrument Driver Testing Tool provides a way to do the following:

+ Verify property behavior.
+ Verify function behavior.
+ Save the test as a test file, a MATLAB code, or driver function.

+ Export the test results to MATLAB workspace, figure window, MAT-file, or the
MATLAB Variables editor.

* Save test results as an HTML page.

Drivers

You can use the MATLAB Instrument Driver Testing Tool to test any MATLAB
instrument driver, which include:

+ MATLAB interface drivers

+ MATLAB VXlIplug&play drivers

*+ MATLAB IVI drivers

Instrument Driver Testing Tool Overview

MATLAB VXlIplug&play drivers and MATLAB IVI drivers can be created from
VXIplug&play and IVI drivers, respectively, using the MATLAB Instrument Driver
Editor or the makemid function.

Test Structure
The driver test structure is composed of setup information and test steps.
Setup

When setting up or initializing the test, you provide a test name and description, identify
the driver to test, define the interface to the instrument, and set the test preferences.
This information remains unchanged throughout the execution of the test, and applies to
every step.

Test Steps

The executable portion of the test is divided into any number of test steps. A test step can
perform one of four verifications:

+ Set property — Verify that the set command or set code of a single device object or
group object property in the driver does not error, and that the driver supports the
defined range for the property value. You can use one value or all supported values for
the property. You may also use invalid property values to check the driver's response.

* Get property — Verify the reading of a single device object or group object property
from the driver.

* Properties sweep — Verify several properties in a single step.

* Function — Verify the execution of a driver function.

After configuring your test steps, you can execute the steps individually, or run a
complete test that executes all the steps in the test.

Starting

You start the MATLAB Instrument Driver Testing Tool by typing the MATLAB
command

midtest

This opens the tool without any test file loaded.

20-3

20 Using the Instrument Driver Testing Tool

20-4

You may specify a test file (usually created in an earlier session of the tool) when you
start the tool so that it opens up with a test file already loaded.

midtest("MyDriverTestfile")

Note: MIDTEST and the Instrument Driver Testing Tool are unable to open MDDs with
non-ascii characters either in their name or path on Mac platforms.

Example

For the examples in this chapter, you will create a test for the Tektronix TDS210
oscilloscope driver that you created in “MATLAB Instrument Driver Editor Overview” on
page 19-2.

You will create each kind of step in your test: set property, get property, sweep
properties, and function.

Setting Up Your Test

Setting Up Your Test

In this section...
“Test File” on page 20-5

“Providing a Name and Description” on page 20-5

“Specifying the Driver” on page 20-5
“Specifying an Interface” on page 20-6
“Setting Test Preferences” on page 20-6

“Setting Up a Driver Test” on page 20-7

Test File

You can specify a test file to load when you start midtest, open a test file after the
MATLAB Instrument Driver Testing Tool is already up, or create a new test. You may
find it convenient to keep the driver and test file together in the same directory. For easy
use in the MATLAB Command Window, you can put that directory in the MATLAB path
with the addpath command.

Note: MIDTEST and the Instrument Driver Testing Tool are unable to open MDDs with
non-ascii characters either in their name or path on Mac platforms.

Providing a Name and Description

The Name field allows a one-line text definition for your test. This name appears in the
header of the test results in the Output Window.

The Description field allows a full definition of the text with as much descriptive text as
you need.

Specifying the Driver
In the Driver text field, you specify the driver to be tested. This is any MATLAB

instrument driver, usually with the .mdd extension. Enter the full path to the driver, or
click Browse to navigate to the driver's directory.

20-5

20 Using the Instrument Driver Testing Tool

20-6

Specifying an Interface

You specify the interface with the instrument for the testing of the driver. The
instrument object type may be GPIB, VISA, TCPIP, UDP, or serial port. Depending
on the type you choose, the New Object Creation dialog box prompts you for further
configuration information.

The tool then creates a device object based on interface and driver.

Setting Test Preferences

The Test Preferences dialog box allows you to set certain behaviors of the tool when
running a test.

Run Mode

This specifies whether the test runs all the steps or only one step in the test.
Fail Action

This specifies what happens if a step within the test fails. The test may stop after the
failed step or continue, with or without resetting the instrument.

No-error String

This field specifies the expected string returned from the instrument when there is no
error. If you indicate that a step passes when no error is returned from the instrument,
the tool compares the string returned from the instrument via the geterror function,
to the string given here in the Preferences dialog box. If the strings match, then the tool
assumes there is no error from the instrument.

Number of Values to Test

A double-precision property can be tested using all supported values. You can request
this when testing it as a single step, or the tool does it automatically when the property
is tested as part of a property sweep step. This field specifies how many values are tested
for such a property.

The number of values includes the defined minimum and maximum for the property, and
integer values equally spaced between these limits.

If your property requires noninteger values for testing, then create a separate test step
for that property instead of including it in a sweep.

Setting Up Your Test

Setting Up a Driver Test

This example identifies the driver to be tested, and defines global setup information for
the test. You will be testing the driver created in the examples of “MATLAB Instrument
Driver Editor Overview” on page 19-2.

1 Open the MATLAB Instrument Driver Testing Tool from the command line with the
command midtest.

| MATLAB Instrument Driver Testing Tool _{alxl
File Run Help
&t F X
|TeSt Explorer Unnamed Test e
Mame:
Unnamed kest
Description:
Driver:
Browse. .. |
Test Steps
@- = Pr-:pért:_.-
m— Configure Interface. ..
Add Settings I Oukput Window |
Ready P

2 Inthe Name text field, enter TDS 210 Driver Sample Test.

3 In the Description text field, enter A test to check some of the
properties and functions of the TDS 210 oscilloscope driver.

4 In the Driver field, enter the name of the driver you created in “MATLAB
Instrument Driver Editor Overview” on page 19-2. The text field will display the
whole pathname, with the driver file tektronix_tds210 ex.mdd.

5 Click the Create button to create an instrument interface.

20-7

20 Using the Instrument Driver Testing Tool

=} New Dbject Creation x|

—~Define ohject

Instrument object type: e

—izanfigure object creation

1 K K S

Sendor: I cec
Eoard index: l]
Fritnary address: |4

Ok Cancel | Cresate

6 In the New Object Creation dialog box,

a Select your Instrument object type, Vendor, Board index, and Primary
address of your instrument.

The example illustrations in this chapter use a GPIB board with index 0 and the
instrument at address 4. Your configuration may be different.

b Click OK.
7 Click the File menu and select Test Preferences.
8 Inthe Test Preferences dialog box,

a For Select run mode, click Run all steps.

b For Select fail action, click Continue test.

¢ For Message returned from instrument when no error occurred, enter
""", (This is an empty string in double quotes.)

d For Number of values to test for double properties, enter 5.
e Click OK.

20-8

Setting Up Your Test

Test Preferences x|

—=elect run mode

™ Run current step only

—=elect fail action
% Cortinue test
" Reset instrumert and cortinue test
8 Stop test
8 Stop test and reset instrument

Meszage returned from instrument when no error occurred: I
Murmber of walues to test for double properties: IS

034 | Cancel | Helg |

The MATLAB Instrument Driver Testing Tool now displays all your setup
information.

20-9

20 Using the Instrument Driver Testing Tool

-.,_l MATLAB Instrument Driver Testing Tool ;Iglll
File Run Help

LR S

Test Explorer TDS 210 Driver Sample Test

View Help

Mame:

TDS 210 Driver Sample Test
Description:

test to check some of the properties and functions of the TD'S 210 oscilloscope
river.

Drriver:
ID:\W0rk\matlab?\matIab\work\drivers\teldronix_tds21D_ex.mdd Browvse... |
Interface:

| ePiB0-4 =l create.. |

Test Steps

@ Set Property
@ Get Property
£t Function

Configure Interface... |

A Settings I Output \I\ﬂndowl

4
9 Click File and select Save. Enter tektronix_tds210_ex_test as the filename for
your test. The tool automatically adds the .xml file extension.

20-10

Defining Test Steps

Defining Test Steps

In this section...

“Test Step: Set Property” on page 20-11
“Test Step: Get Property” on page 20-14
“Test Step: Properties Sweep” on page 20-16

“Test Step: Function” on page 20-19

Test Step: Set Property

You use a set property test step to verify a driver's set code or set command for a
property. You provide a name for the step, select the driver property to test and the
values to test it with, and define the conditions for the step's passing.

Seftings

Dscription

Name

You provide a name for each test step. The name appears in the
Test Explorer tree as well as in the results output.

Property to Test

A set property step can test only one property. You choose the
property from the Property to Test list. Additional properties can be
tested with additional steps, or with a sweep step.

Object(s) to Test

A property may be defined for the instrument or for a group object.
If you are testing a group object property, you select which object
you want tested in the Object(s) to Test list.

Define the Values
to Test

If the property is has enumerated values, you can select one of the
defined values, all of the supported values, or some other value. If
the property's value is a double-precision number, you can select

a value within its defined range, all supported values, or some
other value. For a double, you set the number of values tested for
all supported values in the Preferences dialog box (see “Number of
Values to Test” on page 20-6).

Select When this
Step Passes

The step passes when one or both of two conditions are met:

+ If no instrument or MATLAB error occurs as a result of
attempting to set the property with its test value

+ If a query of the property after it is set returns a specified value

20-11

20 Using the Instrument Driver Testing Tool

Settings Dscription

will pass.

If you select more than one of these conditions, then both conditions
must be met for the step to pass. If no boxes are selected, the test

Creating a Test Step: Set Property

Click the Add button.

ocUbhbhwN-—

Click the Set Property option in the Test Steps list box.

In the Name field, enter Set Display Contrast.

In the Property to test list, select DisplayContrast.

For Define the value(s) to test, select All supported values.
For Select when this step passes,

+ Select If no MATLAB software or instrument error occurs.

+ Select If current value matches configured value.

-.__l MATLAB Instrument Driver Testing Tool

File Run Help

=10l x|

o 2 3 X

Test Explorer Set Display Contrast (Set Property Test Step)

View Help

[TDS 210 Driver Sample Test Mame:

Property to test:

Set Display Contrast

CursarType
Diz rast

Device object properties:

Messurement group object properties: LI
Ohbject(s) to test:
I Dievice ohject LI

Define the valuels) to test
ol | 1 33

& all supported values

" Other: I

~Select when this step passe:

Test Steps

% it no MATLAE or instrument error ocours

@ Properties Sweep
E Set Property

IV If current value matches configured value

Showe Help on Property..

A Settings I Output \I\ﬂndowl

20-12

Defining Test Steps

7 Click File and select Save.

Running a Test Step to Set a Property

You can run an individual test step to verify its behavior:

1 Select Set Display Contrast in the Test Explorer tree.

2 With the cursor on the selected name, right-click to bring up the context menu.
3 In the context menu, select Run this step only.

Mame:

Test
| —

Run kest starting From this step

Rename
Duplicate

Delete

You may want to repeat this step as you observe the oscilloscope display. The test

sets the display contrast to five different values: lowest acceptable value (1%), highest
acceptable value (100%), and three approximately equally spaced integer values between
these limits.

The tool automatically displays the Output Window with the test results.

20-13

20 Using the Instrument Driver Testing Tool

20-14

RI=TE
File Run Help
o 2 3 X
Test Explorer Qutput Window View Help
TDS 210 Driver Sample Test “erhosity: I Showy all results including warnings LI
I— S Contrast
Test: TDS 210 Driver Sample Test
Start time: 22-Dec-2003 15:12:14
Test Step 1: Set Display Contrast (Set Property Test Step)
Test step status: PASSED
Stop time: 22-Dec-2003 15:12:18
Test status: PASSED
Test Steps
@ Properties Sweep
E Set Property
Get Property
Function
Addd Seftings Qutput Window |
e

This test step passed because, for each of the five display contrast settings, the tool read
back a value that was equal to the configured value.

Test Step: Get Property

You use a get property test step to verify a driver's ability to read a property. You provide

a name for the step, select the driver property to test, and define the conditions for the
step's passing.

Settings

The settings for the get property step are the same as for a “Test Step: Set Property”
on page 20-11, except that instead of providing a value to write, you can provide an
output argument variable.

Output Argument
The test step assigns the optional output argument variable the value that results from

reading the property. The variable is available for “Exporting Results” on page 20-27,
after the test step has executed.

Defining Test Steps

Creating a Test Step: Get Property

Click the Get Property option in the Test Step field.
Click the Add button.

In the Name field, enter Getting Display Contrast.
In the Property to test list, select DisplayContrast.
In the Output argument field, enter DispContr.

For Select when this step passes,

cCUbhWN-—

« Unselect the box for If no MATLAB software or instrument error occurs.

Select If property value is, and enter a value of 80.

This value is chosen to generate a failure. If this step follows the previous step in
the example, the display contrast is still set at 100. If this step is run by itself,
the display contrast is set to 50 by the *RST command that is executed as part of
your connect code for the driver.

-.__l MATLAB Instrument Driver Testing Tool ;Iglll

File Run Help
o 2 3 OX

Test Explorer Get Display Contrast {Get Property Test Step) View Help
[TDS 210 Driver Sample Test Mame:

%] Set Display Cartrast et Display Cortrast

Bl = rast

Property to test:

CursarType

L

Instrumenthdocdel

Measurement aroun ohiect nroperties: LI
Ohbject(s) to test:
I Device object LI
Output argument:
IDispContr
Test Steps Select when this step passe:
i Prope 1] [If i MATLAE or instrument error ocours
<
E et Property I 1t property value is: ISD
@ Get Property
£t Function
Showe Help on Property..
A Settings I Output \I\ﬂndowl

7 Click File and select Save.

20-15

20 Using the Instrument Driver Testing Tool

Running a Test Step to Get a Property

You run the individual test step to verify its behavior.

1 Select Get Display Contrast in the Test Explorer tree.

2 With the cursor on the selected name, click the right mouse button to bring up the
context menu.

3 In the context menu, select Run this step only.

Note that the test fails, reading a value of 50 while expecting a value of 80.

-.__l MATLAB Instrument Driver Testing Tool ;Iglll

File Run Help
o 2 3 OX
Test Explorer Qutput Window View Help

TD= 210 Driver Sample Test Werhosity: I Show all results including warnings LI

Set Display Contra:
Bilcet Di ast Test: TDS 210 Driver Sample Test

Start tirme: 22-Dec-2003 17:17:22

Test Step 2 Get Display Contrast (Get Property Test Step)
The property is not configured to the expected value.
Actual value: 50

Expected value: 80

Test step status: FAILED

Test Steps
& Proper Eep
@ Set Property Stop time: 22-Dec-2003 17:17:24
[et Property Test status: FAILED
Fu| Function
Add Seftings Output Window: I

Test Step: Properties Sweep

A properties sweep step allows you to test several properties in a single step. All selected
properties are tested for all supported values. (In the case of properties with double-
precision values, you determine the “Number of Values to Test” on page 20-6, in the Test
Preferences dialog box.)

20-16

Defining Test Steps

Settings

The fields for name and passing conditions are the same as other types of test steps. The
sweep step also requires that you select which properties and groups to test.

Select the Properties to Test

You may select any or all of the properties for testing in a sweep step. You may find it
convenient to create several sweep steps for testing related groups properties together.

Select the Group Object to Use on Sweep

For those properties defined for group objects, you can select a particular group object to
test, or all the group objects. You can also define different sweep steps for different group
objects.

Creating a Sweep Step to Test All Properties

Click the Properties Sweep option in the Test Step field.
Click the Add button.

In the Name field, enter All Properties Sweep.

For Select the properties to test, click Select All.

In the Select the group object(s) field,

A WN—

For the Measurement group, select All Measurement group objects.
+ For the Trigger group, select AIl Trigger group objects.
6 For Select when this step passes,
Select If no MATLAB software or instrument error occurs, and

+ Select If current value matches configured value
7 Click File and select Save.

20-17

20 Using the Instrument Driver Testing Tool

20-18

-.,_l MATLAB Instrument Driver Testing Tool

File Run Help

LR S

Test Explorer

TDS 210 Driver Sample Test
Set Display Contrast
et Display Cortrast

Test Steps

@ Set Property
@ Get Property
£t Function

Add

=]
X
All Properties Sweep {Properties Sweep Test Step) View Help
Mame:
Al Properties Sweep
Select the properties to test: Select Al Unselect Al |
Property Mame Group Mame |
¥ |CursorDets Device -
W CursorType Device
W DizplayContrast Device
¥ |Imstrumertiodel Device
W MessurementType Messurement
¥ |Source Meazurement e
¥ |units Meazurement
W |value Measurement LI
Select the group ohject(=) to use on sweep:
Measurement: I All Measurement group objects LI
Trigoer: I Al Trigger group objects LI
~Select when this step passe:
IV if o MATLAB or instrumert error ocours
IV If current value matches configured value
Settings I Output \I\ﬂndowl
4

Running a Sweep Step to Test All Properties

You run the sweep test step to verify its behavior.

1 Select All Properties Sweep in the Test Explorer tree.
2 With the cursor on the selected name, click the right mouse button to bring up the

context menu.

3 In the context menu, select Run this step only.

The Output Window is updated as each property in the sweep is tested. Note that the
entire sweep is only one step in the overall test.

Defining Test Steps

RI=TE
File Run Help
o 2 3 OX
Test Explorer Qutput Window View Help
TDS 210 Driver Sample Test “erhosity: I Showy all results including warnings LI

%] Set Display Cartrast
4] Get Display Cortrast

Test Steps

@ Set Property
@ Get Property
@ Function

Test: TDS 210 Driver Sample Test
Start tirme: 23-Dec-2003 10:14:48

Test Step 3 All Properties Sweep (Properties Sweep Test Step)
Testing CursorDelta property in the parent group.

Testing CursorType property in the parent group.

Testing DisplayContrast property in the parent group.

Testing Instrumentiodel property in the parent group.

Testing MeasurementType property in the Measurement group.
Testing Source property in the Measurement group.

Testing Units property in the Measurement group.

Testing Yalue property in the Measurement group.

Testing Slope property in the Trigger group.

Testing Source property in the Trigger group.

Test step status: PASSED

Stop time: 23-Dec-2003 10:15:22
Test status: PASSED

Seftings Output Window: I

Test Step: Function

A function test step sends a function call to the instrument. You select the function
called, the input data and output arguments (if required), and the conditions for passing.

Settings

Name

You provide a name for each test step. The name appears in the Test Explorer tree as
well as in the results output.

20-19

20 Using the Instrument Driver Testing Tool

20-20

Function to test

A function step can test only one function. You choose the function from the Function to
test list. Additional functions can be tested with additional steps.

Function definition

The tool displays below the selected function what the call command for the function
looks like. This helps you when deciding what input and output arguments to supply.

Input argument(s) and Output argument(s)

You provide input arguments as a comma-separated list of data, strings, character
vectors, or whatever the function is expecting.

You provide output argument variable for any data returned from the function. The
output arguments can be used to determine if the test step passes, or for “Exporting
Results” on page 20-27 after the test step has executed.

Select when this step passes
The step passes when any of three conditions is met:

* If no instrument or MATLAB software error occurs as a result of attempting to
execute the function

+ If the returned output arguments match expected values

+ If the output of a specified function is true

If you select more than one of these conditions, then all selected conditions must be met
for the step to pass. If no boxes are selected, the test will pass.

Creating a Test Step: Function

Click the Function option in the Test Step field.

Click the Add button.

In the Name field, enter Config Waveform.

In the Function to test list, select conFigureWaveform.

In the Input argument(s) field, type "CH1", 1, 3000.

In the Output argument(s) field, type Channel, StartAdr, StopAdr.
For Select when this step passes,

NO O bhWN—

+ Select If no MATLAB software or instrument error occurs.
+ Select If output arguments are, and enter in its field "CH1", 1, 2500.

Defining Test Steps

+ Unselect If output of function ... is true.
8 Click File and select Save.

Note that you set the input argument for the stop address to 3000, but you set the
expected value for its output argument, StopAdr, to 2500. This is because the maximum
address of the oscilloscope is 2500. If you attempt to exceed that value, the oscilloscope
address is set to the maximum.

-.__l MATLAB Instrument Driver Testing Tool ;Iglll
File Runm Help
o 2 3 OX
Test Explorer Config Waveform {Function Test 5tep) View Help
[TDS 210 Driver Sample Test Mame:
E_ Set Display Contrast (Config Wavefarm
4] Get Display Cortrast ;
@ Al Properties Sweep IFUE R D s
Co form Device object functions: =

Test Steps

@ Properties Sweep
Set Property

Get Property

@ Function

autozet
canfic

devicereset LI
Function definition: [OUT1, OUT2, QUT3] = INWOKE{COB., 'configuretyaveform', SOURCE, ST,
Ohbject(s) to test:

I Device object LI
Input argument(s):
e, 1, 3000

Output argument(s):

charnel, Startadr, Stopadr

Select when this step passe:

[¥ If io MATLAE or instrument error ocours

I 1t output arguments are: I'CH1 1, 2500

(] output of function: I iz true

Showy Help on Function...

Settings I Output \I\ﬂndowl

Running a Test Step to Test a Function

You can run an individual test step to verify its behavior

1 Select Config Waveform in the Test Explorer tree.

2 With the cursor on the selected name, click the right mouse button to bring up the
context menu.

3 In the context menu, select Run this step only.

20-21

20 Using the Instrument Driver Testing Tool

20-22

-.,_l MATLAB Instrument Driver Testing Tool ;Iglll
File Run Help

L Y

Test Explorer Qutput Window View Help

TDS 210 Driver Sample Test

Set Display Cortrast
Get Display Cortrast
@ All Properties Sweep

i rtn

“erhosity: I Showy all results including warnings

=

Test: TDS 210 Driver Sample Test
Start time: 23-Dec-2003 14:31:22

Test Step 4: Config Waveform (Function Test Step)
Test step status: PASSED

Stop time: 23-Dec-2003 14:31:24
Test status: PASSED

Test Steps

@ Properties Sweep

Seftings Output Window: I

Saving Your Test

Saving Your Test

In this section...
“Saving the Test as MATLAB Code” on page 20-23

“Saving the Test as a Driver Function” on page 20-23

Saving the Test as MATLAB Code

In the preceding examples of this chapter, you have been saving the test file after
creating each step. The test file is saved in XML format. Here are some other save
options.

You save the test file as MATLAB code by clicking the File menu and selecting Save
Test as M-Code.

You can execute the test by calling this file from the MATLAB Command Window.

For example, you can save the test file you created in this chapter as
tektronix_tds210 ex_ test.m. Then you execute the test from the MATLAB
Command Window by typing

tektronix_tds210 ex_test

The test results are displayed in the MATLAB Command Window.

Saving the Test as a Driver Function

You save your test as a driver function by clicking the File menu and selecting Save
Test as Driver Function.

<} Save Test With Driver x|

Specify the driver function name:ldrivertest

Use the followving command to execute this driver function from the MATLAB
command line (where deviceObj is the device ohject):

out = invoke(deviceOhj, 'drivertest");
cancel_|

When you enter a name for the driver test function, the invoke command at the bottom
of the dialog box reflects that name. You use that invoke command to execute the driver
function from the MATLAB Command Window or in a file.

20-23

20 Using the Instrument Driver Testing Tool

20-24

Creating a Driver Test Function

1 Click the File menu and select Save Test as Driver Function.
2 Enter drivertest in the Specify the driver function name field.
3 Click OK.

A function called drivertest is created and saved as part of the instrument driver file.
You can open the driver file in the MATLAB Instrument Driver Editor tool (nidedit) to
verify that the drivertest function is included.

Calling a Driver Test Function from the MATLAB Command Window

Now that the test function is included in the driver, you access it with the invoke
command from MATLAB.

In the MATLAB Command Window,

1 Create an interface object.

g = gpib(“cec",0,4)
2 Create a device object, specifying the driver with the drivertest function saved in
it.

obj = icdevice("tektronix_tds210 _ex.mdd",qg)
3 Connect to the device.

connect(obj)
4 Execute the driver test.

out = invoke(obj, "drivertest”)
5 When the test is complete, disconnect from the instrument and delete the objects.

disconnect(obj)
delete ([g obj]D)

Testing and Results

Testing and Results

In this section...

“Running All Steps” on page 20-25
“Partial Testing” on page 20-27
“Exporting Results” on page 20-27

“Saving Results” on page 20-28

Running All Steps
So far in this chapter, you have only run individual test steps after each was created.

When you run the entire test, all the test steps run in the order listed in the Test
Explorer tree. Using the mouse, you may drag the nodes of the tree to alter their
sequence.

The Output Window displays the results of each step, along with a final result of the
complete test.

Running a Complete Test

1 Select Get Display Contrast in the Test Explorer tree.
2 In the Select when this step passes field, change the If property value is entry
from 80 to 100.

Earlier you entered a value of 80 to illustrate what a failure looks like. The display
contrast is left at 100 from the Set Display Contrast test step, so that is what

you will test for in the next step.
3 Click File and select Save.
4 Click the green arrow button to start a test run.

20-25

20 Using the Instrument Driver Testing Tool

20-26

-.,_l MATLAB Instrument Driver Testing Tool ;Iglll
File Run Help

NI R

Test Explorer Qutput Window View Help

TDS 210 Driver Sample Test
Set Display Cortrast
@ All Properties Sweep
@ Config Wavefarm

“erhosity: I Showy all results including warnings

=

Test Steps

@ Properties Sweep

Test: TDS 210 Driver Sample Test
Start time: 23-Dec-2003 14:51:44

Test Step 1: Set Display Contrast (Set Property Test Step)
Test step status: PASSED

Test Step 2 Get Display Contrast (Get Property Test Step)
Test step status: PASSED

Test Step 3 All Properties Sweep (Properties Sweep Test Step)
Testing CursorDelta property in the parent group.

Testing CursorType property in the parent group.

Testing DisplayContrast property in the parent group.

Testing Instrumentiodel property in the parent group.

Testing MeasurementType property in the Measurement group.
Testing Source property in the Measurement group.

Testing Units property in the Measurement group.

Testing Yalue property in the Measurement group.

Testing Slope property in the Trigger group.

Testing Source property in the Trigger group.

Test step status: PASSED

Test Step 4: Config Waveform (Function Test Step)
Test step status: PASSED

Stop time: 23-Dec-2003 14:52:18
Test status: PASSED

Seftings Output Window: I

Testing and Results

Partial Testing

Using the context menu in the Test Explorer tree, you can run a partial test of either
an individual test step, or from the chosen test step through the end of the test.

Exporting Results

You can export the test results to many locations:

+ MATLAB workspace
+ MATLAB figure window

+ MAT-file

+ MATLAB Variables editor

The results you can export are those assigned to output variables in the settings for a

test step.

Exporting Test Results to the MATLAB Workspace

1 Click the File menu and select Export Test Results.
2 In the Test Results Exporter dialog box, select MATLAB Workspace as the Data

destination.

By default, all the variables are selected. You may unselect any.
3 Click the Export button.

<) Test Results Exporter

Data destination: LI,
Select the data to export:

x|

Test Step Type

Test Step Marme

Wariahle Mame |

Get Property (2)

Get Display Contrast

DizpContr

Function (4]

Config Wavefarm

Channel

Function (4]

Config Wavefarm

StartAdr

===

Function (4]

Config Wavefarm

|St0pAdr

Export |

Cloze | Help |

The variables are now available in the MATLAB workspace, with values that were
established by the test run.

20-27

20 Using the Instrument Driver Testing Tool

ETMTE]

File Edit Wiew Graphics Debug Desktop Window Help

J': Eﬁ é | ’E | '|Stac:k:|Eiase 'l

| “alug | Class |
‘CHY char

100 double

1 double

2500 double

Saving Results

You save your test results in an HTML file by clicking the File menu and selecting Save
Test Results. The format of the results in this file reflects their appearance in the tester
tool's Output Window.

20-28

Instrument Control Toolbox
Troubleshooting

“How to Use This Troubleshooting Guide” on page 21-2
“Is My Hardware Supported?” on page 21-3
“Troubleshooting SPI Interface” on page 21-5
“Troubleshooting 12C Interface” on page 21-10
“Troubleshooting MODBUS Interface” on page 21-15
“Troubleshooting Bluetooth Interface” on page 21-18
“Troubleshooting Serial Port Interface” on page 21-25
“Troubleshooting GPIB Interface” on page 21-29
“Troubleshooting TCP/IP Interface” on page 21-35
“Troubleshooting UDP Interface” on page 21-38
“Troubleshooting IVI, VISA, and the Quick-Control Interfaces” on page 21-41
“Hardware Support Packages” on page 21-47

“Deploying Standalone Applications with Instrument Control Toolbox” on page
21-49

“Contact MathWorks and Use the instrsupport Function” on page 21-52

21

Instrument Control Toolbox Troubleshooting

How to Use This Troubleshooting Guide

21-2

If you have trouble connecting to or communicating with an instrument, try the
suggestions in this guide.

The first thing to check is that your instrument is supported with the toolbox. See “Is My
Hardware Supported?” on page 21-3 for information about supported interfaces and
supported hardware.

For connection and communication issues using a specific interface, see the section
about that interface. For example, if you are having trouble using an instrument over
the Bluetooth interface, refer to the Bluetooth section. Each interface section covers
platform support, interface requirements, and troubleshooting tips and procedures for
that interface.

If you are using VISA with another interface, try reading the sections for both interfaces.
For example, if you are using VISA with UDP, try reading the sections on both VISA
(“IVI, VISA, and the Quick Control Interfaces” topic) and UDP.

If you are having trouble with deployment or use of the MATLAB Compiler™, see
“Deploying Standalone Applications with Instrument Control Toolbox” on page 21-49.

If you need to contact MathWorks Technical Support, read “Contact MathWorks and Use
the instrsupport Function” on page 21-52 first. The instrsupport function runs
diagnostics and provides useful information that may help solve your problem.

Is My Hardware Supported?

Is My Hardware Supported?

In this section...

“Supported Interfaces” on page 21-3

“Supported Hardware” on page 21-4

Supported Interfaces

The Instrument Control Toolbox supports the use of instruments and communication via
the following interfaces. The table lists the interface support by platform. Notes after the
table contain more specific information.

Feature 64-bit MATLAB on 64-bit MATLAB on Mac |64-bit MATLAB on
Windows (o} Linux

Serial supported supported supported

TCP/TP supported supported supported

UDP supported supported supported

VISA ? supported * supported on one supported *

vendor 3

GPIB* supported ' supported *

12C° supported supported ' supported !

SPI® supported supported supported !

Bluetooth © supported supported

MODBUS supported supported supported

Quick-Control supported supported supported 2

Oscilloscope and

Quick-Control

Function Generator

MATLAB supported supported supported

Instrument Drivers

MATLAB supported

Instrument Drivers

made using IVI-

21-3

21

Instrument Control Toolbox Troubleshooting

214

Feature 64-bit MATLAB on 64-bit MATLAB on Mac | 64-bit MATLAB on
Windows (0} Linux

C drivers and

Instrument

Wrappers for IVI-C

drivers

Table Notes
1. Dependent on support by third-party vendor driver for the hardware on this platform.

2. Dependent on third-party vendor support of platform when using an IVI-driver with
Quick-Control Oscilloscope or Quick-Control Function Generator.

3. Requires Agilent, National Instruments, Tektronix, or TAMS VISA compliant with
VISA specification 5.0 or higher for any platform. Only National Instruments VISA is
supported on Mac OS. The other vendors’ VISA support does not include Mac OS.

4. Requires Keysight (formerly Agilent), ICS Electronics, Measurement Computing
(MCC), or National Instruments hardware and driver.

5. Requires Aardvark or National Instruments hardware and driver.

6. Bluetooth Serial Port Profile only.

Supported Hardware

See http://www.mathworks.com/hardware-support/instrument-control-software.html for
a complete list of supported hardware.

http://www.mathworks.com/hardware-support/instrument-control-software.html

Troubleshooting SPI Interface

Troubleshooting SPI Interface

In this section...

“Supported Platforms” on page 21-5
“Adaptor Requirements” on page 21-6

“Configuration and Connection” on page 21-7

Serial Peripheral Interface (SPI) is a synchronous serial data link standard that operates
in full duplex mode. It is commonly used in the test and measurement field. Common
uses include communicating with micro controllers, EEPROMs, A2D devices, embedded

controllers, etc.

Instrument Control Toolbox SPI support lets you open connections with individual chips
and to read and write over the connections to individual chips using an Aardvark or
NI-845x host adaptor. The primary uses for the spi interface involve the write, read,
and wr iteAndRead functions for synchronously reading and writing binary data.

Supported Platforms

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the spi interface.

The SPI interface is supported on these platforms when used with the Aardvark host
adaptor:

* Linux — Red Hat Enterprise Linux 4 and 5 with kernel 2.6, and possibly SUSE and
Ubuntu distributions.

* Mac OS X 64-bit — Intel versions of Mac OS X 10.5 Leopard, 10.6 Snow Leopard, 10.7
Lion, and 10.8 Mountain Lion.

* Microsoft Windows 64-bit

The SPI interface i1s supported on these platforms when used with the NI-845x host
adaptor:

* Microsoft Windows 64-bit

21-5

21

Instrument Control Toolbox Troubleshooting

21-6

Adaptor Requirements

You need either a Total Phase Aardvark host adaptor or an NI-845x adaptor board
installed to use the spi interface. The following sections describe requirements for each
option.

Aardvark-specific Requirements

To use the SPI interface with the Aardvark adaptor, download the Hardware Support
Package to obtain the latest driver, if you do not already have the driver installed. If
you already have the latest driver installed, you do not need to download this Support
Package.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I2C/SPI Interface Support Package” on page 15-15 to install it.

Install the Aardvark Software API and Shared Library appropriate for your operating
system.

The aardvark.dl 1 file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

* Location where MATLAB was started from (bin folder)

+ MATLAB current folder (PWD)

* Windows folder C:\winnt or C:\windows

+ Folders listed in the path environment variable

For use on Linux platforms, the aardvark.so file that comes with the Total Phase
Aardvark adaptor board must be in your MATLAB path.

NI-845x-specific Requirements

To use the SPI interface with the NI-845x adaptor, download the hardware support
package to obtain the latest driver, if you do not already have the driver installed. If
you already have the latest driver installed, you do not need to download this support
package.

If you do not have the NI-845x driver installed, see “Install the NI-845x 12C/SPI
Interface Support Package” on page 15-14 to install it.

Troubleshooting SPI Interface

Configuration and Connection

1

Make sure that you have the correct instrument driver installed for your device.
Refer to your device’s documentation and the vendor’s web site.

Make sure your device is supported in Instrument Control Toolbox. See “Is My
Hardware Supported?” on page 21-3.

You must have a Total Phase Aardvark host adaptor or an NI-845x adaptor board
installed to use the SPI interface. Install the appropriate support package if you
have not already. See “Adaptor Requirements” on page 21-6.
Make sure that your SPI adaptor board is plugged into the computer running
MATLAB. You can verify that you have one of the adaptors installed by using the
instrhwinfo function with the spi interface name.

»» instrhwinfo('spi")

ans =

HardwareInfo with properties:

SupportedVendors: {'aardwvark' "mig4Lx"}
In=talledVendors: {'nif45x"}

If you do not see either aardvark or ni845x listed, you need to install one of the
support packages or install the driver directly from the vendor.

Make sure that Instrument Control Toolbox recognizes your device, by using the
instrhwinfo function with the spi interface name, and your adaptor name, either
aardvark or ni845x. For example:

21-7

21 Instrument Control Toolbox Troubleshooting

>» instrhwinfo('spi' , 'Aardvark')
ans =
VendorName: 'aardvark'
VendorDescription: 'Total Phase IZC/5PFI Driver'
VendorLibraryName: 'aardvark.dll'®

InstalledBoardId=s: {[0]}
BoardSerialNumbers: {'2237TT22838'}
ChjectConstructorzs: {'spi('aardvark', 0, 0)'}

You will need the information displayed to create the spi object. If your device is not
displayed, check the previous steps.

5 Make sure you can create the spi object. You must provide three arguments
to create the object. BoardIndex and Port are both usually O, and Vendor is
either "aardvark”® or "ni845x". This example uses a SPI object called S that
communicates to an EEPROM chip. Create the object using the BoardIndex and
Port numbers, which are O in both cases.

% Vendor = aardvark
¢ BoardIndex = 0O
% Port = 0

=SS

S = spi(faardvark®, 0, 0);

6 Ifyou do not get an error, the object was created successfully. To verify, you can look
at the object properties, using the name you assigned to the object, S in this case.

21-8

Troubleshooting SPI Interface

> diap(5)
S5PI Object

Adapter Settings
BoardIndex:
BoardSerial:
VendorName :

Communication Settings
BitRate:
ChipSelect:
ClockPhase:
ClockPolarity:
Port:

Communication State
ConnectionStatus:

Eead/Writce State
TransferStatus:

[A U & I
ki
H L

1000000 H=z
0
FirstEdge
TdleLow

1]

Disconnected

Idle

Make sure you can connect to the device, using the connect function with the object

name.

connect(S);

If you do not get an error, the connection was made successfully. If you do get an
error, follow the steps in the error message and/or check the previous steps listed

here.

When you have connected, you can communicate with your device. See “Transmitting
Data Over the SPI Interface” on page 10-9 for an example of reading and writing to a

chip.

21-9

21 Instrument Control Toolbox Troubleshooting

Troubleshooting 12C Interface

21-10

In this section...

“Supported Platforms” on page 21-10
“Adaptor Requirements” on page 21-11

“Configuration and Connection” on page 21-12

12C, or Inter-Integrated Circuit, is a chip-to-chip interface supporting two-wire
communication. Instrument Control Toolbox I2C support lets you open connections with
individual chips and to read and write over the connections to individual chips.

The Instrument Control Toolbox I2C interface lets you do chip-to-chip communication
using an Aardvark or NI-845x host adaptor. Some applications of this interface include
communication with SPD EEPROM and NVRAM chips, communication with SMBus
devices, controlling accelerometers, accessing low-speed DACs and ADCs, changing
settings on color monitors using the display data channel, changing sound volume in
intelligent speakers, reading hardware monitors and diagnostic sensors, visualizing data
sent from an I2C sensor, and turning on or off the power supply of system components.

Supported Platforms

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the I12C interface.

The I2C interface is supported on these platforms when used with the Aardvark host
adaptor:

* Linux — The software works with Red Hat Enterprise Linux 4 and 5 with kernel 2.6.
It may also be successful with SuSE and Ubuntu distributions.

* Mac OS X 64-bit — The software is supported on Intel versions of Mac OS X 10.5
Leopard and 10.6 Snow Leopard.

* Microsoft Windows 64-bit

The I2C interface is supported on these platforms when used with the NI-845x host
adaptor:

* Microsoft Windows 64-bit

Troubleshooting 12C Interface

For updates to the list of currently supported platforms for MATLAB, see http:/
www.mathworks.com/support/sysreq/current_release/.

Adaptor Requirements

You need to have either a Total Phase Aardvark host adaptor or an NI-845x adaptor
board installed to use the I12C interface. The following sections describe requirements for
each option.

Aardvark-specific Requirements

To use the I12C interface with the Aardvark adaptor, download the Hardware Support
Package to obtain the latest driver, if you do not already have the driver installed. If
you already have the latest driver installed, you do not need to download this Support
Package.

If you do not have the Aardvark driver installed, see “Install the Total Phase Aardvark
I12C/SPI Interface Support Package” on page 15-15 to install it.

Install the Aardvark Software API and Shared Library appropriate for your operating
system.

The aardvark.dl 1 file that comes with the Total Phase Aardvark adaptor board must
be available in one of these locations for use on Windows platforms:

* Location where MATLAB was started from (bin folder)

* MATLAB current folder (PWD)

* Windows folder C:\winnt or C:\windows

* Folders listed in the path environment variable

For use on Linux platforms, the aardvark.so file that comes with the Total Phase
Aardvark adaptor board must be in your MATLAB path.

NI-845x-specific Requirements

To use the I2C interface with the NI-845x adaptor, download the hardware support
package to obtain the latest driver, if you do not already have the driver installed. If
you already have the latest driver installed, you do not need to download this support
package.

If you do not have the NI-845x driver installed, see “Install the NI-845x 12C/SPI
Interface Support Package” on page 15-14 to install it.

21-11

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

21

Instrument Control Toolbox Troubleshooting

21-12

Configuration and Connection

1

Make sure that you have the correct instrument driver installed for your device.
Refer to your device’s documentation and the vendor’s web site.

Make sure your device is supported in Instrument Control Toolbox. See “Is My
Hardware Supported?” on page 21-3.

You must have a Total Phase Aardvark host adaptor or an NI-845x adaptor board
installed to use the 12c interface. Install the appropriate support package if you
have not already. See “Adaptor Requirements” on page 21-1